Share to: share facebook share twitter share wa share telegram print page

Линия электропередачи

Одноцепная промежуточная опора ЛЭП 330кВ
Двухцепная анкерно-угловая опора ЛЭП 35кВ
Двухцепная промежуточная опора ЛЭП 35кВ

Ли́ния электропереда́чи (ЛЭП) — часть энергосистемы и электрической сети, предназначенная для передачи электроэнергии от объектов генерации к преобразовательным и распределительным узлам, а также для связи смежных энергосистем.

Различают воздушные и кабельные линии электропередачи. В последнее время приобретают популярность газоизолированные линии — ГИЛ.

По ЛЭП также передают информацию при помощи высокочастотных сигналов (по оценкам специалистов, в СНГ используется порядка 60 тысяч ВЧ-каналов по ЛЭП) и ВОЛС. Используются они для диспетчерского управления, передачи телеметрических данных, сигналов релейной защиты и противоаварийной автоматики.

Строительство ЛЭП — сложная задача, которая включает в себя проектирование, топографо-геодезические работы, монтаж, обслуживание и ремонт.

История

Получение энергии и её немедленное использование применялось человечеством издревле (напр. ветряные двигатели, совмещенные с мельничными жерновами; водяные колеса, совмещенные с механическим молотом; вертелы, вращаемые рабами или животными, совмещенные с кузнечными мехами). Данный подход не всегда удобен, так как местностей со стабильно дующими ветрами немного, количество запруд на реке ограничено, расположены они могут быть в неудобной труднопроходимой местности вдали от поселений и промышленных центров и т. п. Очевидным решением было получение энергии в одном месте с возможностью ее передачи к потребителю в другое.

В средние века и в эпоху промышленной революции предлагались проекты передачи механической мощности на большие расстояния с помощью длинных валов и пневматических труб, которые не были реализованы ввиду технических сложностей.

Открытия в области электричества сделали возможным генерацию различными способами электрической энергии и передачу её потребителю с помощью относительно простых, компактных, дешевых и лёгких в прокладке и монтаже электрокабелей с последующим преобразованием электрической энергии в любой другой необходимый вид энергии.

Воздушные линии электропередачи

Воздушная ЛЭП 500 кВ
Одна из самых мощных ЛЭП в мире: «Итат — Экибастуз — Кокшетау — Челябинск», проектное напряжение 1150 кВ. Видны опоры типа ПОГ-1150.

Воздушная линия электропередачи (ВЛ) — устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплёнными с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам, путепроводам). ВЛи — воздушная линия, выполненная изолированными проводами (СИП).

Состав ВЛ

Документы, регулирующие ВЛ

Внешние видеофайлы
Как это сделано
Обслуживание ВЫСОКОВОЛЬТНОЙ линии под НАПРЯЖЕНИЕМ

Конструкция ВЛ, её проектирование и строительство регулируются Правилами устройства электроустановок (ПУЭ) и Строительными нормами и правилами (СНиП).

Классификация ВЛ

По роду тока

В основном, ВЛ служат для передачи переменного тока, и лишь в отдельных случаях (например, для связи энергосистем, питания контактной сети и другие) используются линии постоянного тока.

Линия электропередачи 150кВ в Днепропетровской области
Линия электропередачи постоянного тока Волгоград-Донбасс (Ростовская и Волгоградская область)

Линии постоянного тока имеют меньшие потери на ёмкостную и индуктивную составляющие. В СССР было построено несколько линий электропередачи постоянного тока, среди которых:

Широкого распространения такие линии не получили, главным образом, в связи с необходимостью возведения сложных концевых подстанций с большим количеством вспомогательной аппаратуры.

По назначению

  • Дальние межсистемные ВЛ напряжением 500 кВ и выше (предназначены для связи отдельных энергосистем).
  • Магистральные ВЛ напряжением 220,330,500 кВ (предназначены для передачи энергии от электростанций, для внешнего электроснабжения крупнейших городов, а также для связи энергосистем и объединения электростанций внутри энергосистем — к примеру, соединяют электростанции с крупными узловыми подстанциями).
  • Распределительные ВЛ напряжением 110,150 и 220 кВ (предназначены для электроснабжения крупных промышленных предприятий и населённых пунктов — соединяют узловые подстанции с подстанциями глубокого ввода городов).
  • ВЛ напряжением 35 кВ применяются преимущественно для электроснабжения сельскохозяйственных (загородных) потребителей.
  • ВЛ 20 кВ и ниже, подводящие электроэнергию к потребителям. Современная городская распределительная сеть выполняется, как правило, на напряжение 10 кВ.

По напряжению

Железобетонная опора ЛЭП 220/380 В с фарфоровыми линейными изоляторами
ЛЭП 10 кВ. Этот класс напряжения широко представлен на постсоветском пространстве
Верхняя часть опоры ЛЭП 10 кВ со стеклянными линейными изоляторами
Пересечение ЛЭП 35 и 150 кВ
Переход ЛЭП 330 кВ через Днепр
Опора ЛЭП в виде многогранной гнутой стойки (МГС), Канада
ЛЭП 150 кВ в системе Днепроэнерго
ЛЭП 750 кВ, трёхстоечная анкерно-угловая опора
Коронные разряды на фазах ЛЭП 750 кВ
ЛЭП 750 кВ, опора типа «Набла»
  • ВЛ до 1000 В (ВЛ низкого класса напряжений)
  • ВЛ выше 1000 В
    • ВЛ 1-35 кВ (ВЛ среднего класса напряжений)
    • ВЛ 110—220 кВ (ВЛ высокого класса напряжений)
    • ВЛ 330—750 кВ (ВЛ сверхвысокого класса напряжений)
    • ВЛ выше 750 кВ (ВЛ ультравысокого класса напряжений)

Эти группы существенно различаются, в основном — требованиями в части расчётных условий и конструкций.

В сетях СНГ общего назначения переменного тока 50 Гц, согласно ГОСТ 721-77, должны использоваться следующие номинальные межфазные напряжения: 380 В; (6)[1], 10, 20, 35, 110, 220, 330, 500, 750 и 1150 кВ. Также существуют сети, построенные по устаревшим стандартам с номинальными межфазными напряжениями: 220 вольт, 3, 15[2] и 150 киловольт. Номинальное напряжение для линий постоянного тока не регламентировано, чаще всего используются напряжения: 150, 400 (Выборгская ПС — Финляндия) и 800 кВ. В специальных сетях могут использоваться и другие классы напряжений, в основном это касается тяговых сетей железных дорог (27,5 кВ, 50 Гц переменного тока и 3,3 кВ постоянного тока), метрополитена (825 В постоянного тока), трамваев и троллейбусов (600 В постоянного тока).

Самой высоковольтной ЛЭП в мире являлась линия Экибастуз — Кокшетау, номинальное напряжение — 1150 кВ. Однако в настоящее время линия эксплуатируется под вдвое меньшим напряжением — 500 кВ. В 1970-х годах в Советском Союзе в процессе подготовки к строительству линии передачи постоянного тока Экибастуз — Центр прорабатывались детали проекта системы электропередачи следующего класса напряжений 2000 — 2200 кВ между электростанциями КАТЭКа и европейской частью страны, но из-за распада СССР и технико-технологических причин реализован он не был.

По режиму работы нейтралей в электроустановках

  • Трёхфазные сети с незаземлёнными (изолированными) нейтралями (нейтраль не присоединена к заземляющему устройству или присоединена к нему через аппараты с больши́м сопротивлением). В СНГ такой режим нейтрали используется в сетях напряжением 3—35 кВ с малыми токами однофазных замыканий на землю.
  • Трёхфазные сети с резонансно-заземлёнными (компенсированными) нейтралями (нейтральная шина присоединена к заземлению через индуктивность). В СНГ используется в сетях напряжением 3-35 кВ с малыми токами однофазных замыканий на землю.
  • Трёхфазные сети с эффективно-заземлёнными нейтралями (сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление). В России это сети напряжением 110, 150 и частично 220 кВ, в которых применяются трансформаторы (автотрансформаторы требуют обязательного глухого заземления нейтрали).
  • Сети с глухозаземлённой нейтралью (нейтраль трансформатора или генератора присоединяется к заземляющему устройству непосредственно или через малое сопротивление). К ним относятся сети напряжением менее 1 кВ, а также сети напряжением 220 кВ и выше.

По режиму работы в зависимости от механического состояния

  • ВЛ нормального режима работы (провода и тросы не оборваны).
  • ВЛ аварийного режима работы (при полном или частичном обрыве проводов и тросов).
  • ВЛ монтажного режима работы (во время монтажа опор, проводов и тросов).

Основные элементы ВЛ

  • Трасса — положение оси ВЛ на земной поверхности.
  • Пикеты (ПК) — отрезки, на которые разбита трасса, длина ПК зависит от номинального напряжения ВЛ и типа местности.
  • Нулевой пикетный знак обозначает начало трассы.
  • Центровой знак на трассе строящейся ВЛ обозначает центр расположения опоры.
  • Производственный пикетаж — установка пикетных и центровых знаков на трассе в соответствии с ведомостью расстановки опор.
  • Фундамент опоры — конструкция, заделанная в грунт или опирающаяся на него и передающая ему нагрузку от опоры, изоляторов, проводов (тросов) и от внешних воздействий (гололёда, ветра).
  • Основание фундамента — грунт нижней части котлована, воспринимающий нагрузку.
  • Пролёт (длина пролёта) — расстояние между центрами двух опор, на которых подвешены провода. Различают промежуточный пролёт (между двумя соседними промежуточными опорами) и анкерный пролёт (между анкерными опорами). Переходный пролёт — пролёт, пересекающий какое-либо сооружение или естественное препятствие (реку, овраг).
  • Угол поворота линии — угол α между направлениями трассы ВЛ в смежных пролётах (до и после поворота).
  • Стрела провеса — вертикальное расстояние между низшей точкой провода в пролёте и прямой, соединяющей точки его крепления на опорах.
  • Габарит провода — вертикальное расстояние от провода в пролёте до пересекаемых трассой инженерных сооружений, поверхности земли или воды.
  • Шлейф (петля) — отрезок провода, соединяющий на анкерной опоре натянутые провода соседних анкерных пролётов.

Монтаж воздушных линий электропередачи

Монтаж линий электропередачи осуществляется методом «под тяжением». Это особенно актуально в случае сложного рельефа местности. При подборе оборудования для монтажа ЛЭП необходимо учитывать количество проводов в фазе, их диаметр и максимальное расстояние между опорами ЛЭП.

Кабельные линии электропередачи

Кабельная линия электропередачи (КЛ) — линия для передачи электроэнергии или отдельных её импульсов, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепёжными деталями, а для маслонаполненных линий, кроме того — с подпитывающими аппаратами и системой сигнализации давления масла.

Классификация

Кабельные линии классифицируют аналогично воздушным линиям. Кроме того, кабельные линии делят:

  • по условиям прохождения:
    • подземные;
    • по сооружениям;
    • подводные.
  • по типу изоляции:
    • жидкостная (пропитанная кабельным нефтяным маслом);
    • твёрдая:
      • бумажно-масляная;
      • поливинилхлоридная (ПВХ);
      • резино-бумажная (RIP);
      • сшитый полиэтилен (XLPE);
      • этилен-пропиленовая резина (EPR).

Здесь не указаны изоляция газообразными веществами и некоторые виды жидкостной и твёрдой изоляции из-за их относительно редкого применения в момент написания статьи[когда?].

Кабельные сооружения

К кабельным сооружениям относятся:

  • Кабельный тоннель — закрытое сооружение (коридор) с расположенными в нём опорными конструкциями для размещения на них кабелей и кабельных муфт, со свободным проходом по всей длине, позволяющим производить прокладку кабелей, ремонт и осмотр кабельных линий.
  • Кабельный канал — непроходное сооружение, закрытое и частично или полностью заглублённое в грунт, пол, перекрытие и т. п. и предназначенное для размещения в нём кабелей, укладку, осмотр и ремонт которых возможно производить лишь при снятом перекрытии.
  • Кабельная шахта — вертикальное кабельное сооружение (как правило, прямоугольного сечения), у которого высота в несколько раз больше стороны сечения, снабжённое скобами или лестницей для передвижения вдоль него людей (проходные шахты) или съёмной полностью или частично стенкой (непроходные шахты).
  • Кабельный этаж — часть здания, ограниченная полом и перекрытием или покрытием, с расстоянием между полом и выступающими частями перекрытия или покрытия не менее 1,8 м.
  • Двойной пол — полость, ограниченная стенами помещения, междуэтажным перекрытием и полом помещения со съёмными плитами (на всей или части площади).
  • Кабельный блок — кабельное сооружение с трубами (каналами) для прокладки в них кабелей с относящимися к нему колодцами.
  • Кабельная камера — подземное кабельное сооружение, закрываемое глухой съёмной бетонной плитой, предназначенное для укладки кабельных муфт или для протяжки кабелей в блоки. Камера, имеющая люк для входа в неё, называется кабельным колодцем.
  • Кабельная эстакада — надземное или наземное открытое горизонтальное или наклонное протяжённое кабельное сооружение. Кабельная эстакада может быть проходной или непроходной.
  • Кабельная галерея — надземное или наземное закрытое (полностью или частично, например, без боковых стен) горизонтальное или наклонное протяжённое проходное кабельное сооружение.

Пожарная безопасность

Температура внутри кабельных каналов (тоннелей) в летнее время должна быть не более чем на 10 °C выше температуры наружного воздуха.

При пожарах в кабельных помещениях в начальный период происходит медленное развитие горения и только спустя некоторое время скорость распространения горения существенно увеличивается. Практика свидетельствует, что при реальных пожарах в кабельных туннелях наблюдаются температуры до 600 °C и выше. Это объясняется тем, что в реальных условиях горят кабели, которые длительное время находятся под токовой нагрузкой и изоляция которых прогревается изнутри до температуры 80 °C и выше. Может возникнуть одновременное воспламенение кабелей в нескольких местах и на значительной длине. Связано это с тем, что кабель находится под нагрузкой и eгo изоляция нагревается до температуры, близкой к температуре самовоспламенения[3].

Кабель состоит из множества конструктивных элементов, для изготовления которых используют, например, материалы, имеющие низкую температуру воспламенения, материалы, склонные к тлению. В конструкцию кабеля и кабельных конструкций, как правило, входят металлические элементы. В случае пожара или токовой перегрузки происходит прогрев этих элементов до температуры порядка 500—600 ˚C, которая превышает температуру воспламенения (250—350 ˚C) многих полимерных материалов, входящих в конструкцию кабеля, в связи с чем возможно их повторное воспламенение от прогретых металлических элементов после прекращения подачи огнетушащего вещества. В связи с этим необходимо выбирать нормативные показатели подачи огнетушащих веществ, чтобы обеспечивать ликвидацию пламенного горения, а также исключить возможность повторного воспламенения[4].

Длительное время в кабельных помещениях применялись установки пенного тушения. Однако опыт эксплуатации выявил ряд недостатков:

  • ограниченный сpoк хранения пенообразователя и недопустимость хранения их водных растворов;
  • неустойчивость в работе;
  • сложность наладки;
  • необходимость специального ухода за устройством дозировки пенообразователя;
  • быстрое разрушение пены при высокой (около 800 °C) температуре среды при пожаре.

Исследования показали, что распылённая вода обладает большей огнетушащей способностью по сравнению с воздушно-механической пеной, так как она хорошо смачивает и охлаждает горящие кабели и строительные конструкции[5].

Линейная скорость распространения пламени для кабельных сооружений (горение кабелей) составляет 1,1 м/мин[6].

Высокотемпературные сверхпроводники

ВТСП-провод

В проводах на основе высокотемпературных сверхпроводников (ВТСП) использование сверхпроводимости позволяет передавать электрический ток без потерь, а также достичь высокой плотности токов. Большим недостатком ВТСП-проводов является необходимость в постоянном охлаждении, что ограничивает их применение на практике. Несмотря на сложности в производстве и эксплуатации ВТСП-проводов, делаются постоянные попытки применения их на практике. Например, в демонстрационной системе силовой сети, запущенной в эксплуатацию в июле 2006 года в США, при напряжении 138 кВ передаётся мощность в 574 МВА на расстояние 600 метров.

Первая коммерческая сверхпроводящая линия электропередачи была запущена в эксплуатацию фирмой American Superconductor на Лонг-Айленде в Нью-Йорке в конце июня 2008 года[7]. Энергосистемы Южной Кореи собираются создать к 2015 году сверхпроводящие линии электропередачи общей длиной в 20 км[8][9].

Потери в ЛЭП

Потери электроэнергии в проводах зависят от силы тока, поэтому при передаче её на дальние расстояния напряжение многократно повышают (во столько же раз уменьшая силу тока) с помощью трансформатора, что при передаче той же мощности позволяет значительно снизить потери. Однако с ростом напряжения начинают происходить различные разрядные явления.

В воздушных линиях сверхвысокого напряжения присутствуют потери активной мощности на корону. Коронный разряд возникает, когда напряжённость электрического поля у поверхности провода превысит пороговую величину , которую можно вычислить по эмпирической формуле Пика:
кВ/см,
где  — радиус провода в метрах,  — отношение плотности воздуха к нормальной[10].

Напряжённость электрического поля прямо пропорциональна напряжению на проводе и обратно пропорциональна его радиусу, поэтому бороться с потерями на корону можно, увеличивая радиус проводов, а также (в меньшей степени) — применяя расщепление фаз, то есть используя в каждой фазе несколько проводов, удерживаемых специальными распорками на расстоянии 40-50 см. Потери на корону приблизительно пропорциональны произведению .

Потери на корону резко возрастают с ростом напряжения, среднегодовые потери на ЛЭП напряжением 500 кВ составляют около 12 кВт/км, при напряжении 750 кВ — 37 кВт/км, при 1150 кВ — 80 кВт/км. Потери также резко возрастают при осадках, особенно изморози, и могут достигать 1200 кВт/км[11].

В прошлом потери в ЛЭП были очень высокими. Так, в конце XIX века потери на 56-километровой линии постоянного тока Крей — Париж составили 45 %[12]. В современных линиях электропередачи (по состоянию на 2020 год) потери составляют всего 2 — 3 %[13]. Однако и эти потери пытаются сократить, используя высокотемпературные сверхпроводники[13]. Впрочем, по состоянию на 2020 год линии электропередачи на высокотемпературных сверхпроводниках отличаются высокой стоимостью и небольшой протяженностью (самая длинная такая линия построена в 2014 году в Германии и имеет длину всего 1 км)[13].

Потери в ЛЭП переменного тока

Важной величиной, влияющей на экономичность ЛЭП переменного тока, является величина, характеризующая соотношение между активной и реактивной мощностями в линии — cos φ. Активная мощность — часть полной мощности, прошедшей по проводам и переданной в нагрузку; Реактивная мощность — это мощность, которая генерируется линией, её зарядной мощностью (ёмкостью между линией и землёй), а также самим генератором, и потребляется реактивной нагрузкой (индуктивной нагрузкой). Потери активной мощности в линии зависят и от передаваемой реактивной мощности. Чем больше переток реактивной мощности, тем больше потери активной.

Потери в ЛЭП переменного тока из-за излучения

При длине ЛЭП переменного тока более нескольких тысяч километров наблюдается ещё один вид потерь — радиоизлучение. Так как такая длина уже сравнима с длиной электромагнитной волны частотой 50 Гц (6000 км, длина четвертьволнового вибратора 1500 км), провод работает как излучающая антенна. Это излучение сильно подавлено целым рядом факторов. И на расстоянии в четверть длины волны от ЛЭП фактически полностью отсутствует[14].

Натуральная мощность и пропускная способность ЛЭП

Натуральная мощность

ЛЭП обладает индуктивностью и ёмкостью. Ёмкостная мощность пропорциональна квадрату напряжения и не зависит от мощности, передаваемой по линии. Индуктивная же мощность линии пропорциональна квадрату тока, а значит и мощности линии. При определённой нагрузке индуктивная и ёмкостная мощности линии становятся равными, и они компенсируют друг друга. Линия становится «идеальной», потребляющей столько реактивной мощности, сколько её вырабатывает. Такая мощность называется натуральной мощностью. Она определяется только погонными индуктивностью и ёмкостью и не зависит от длины линии. По величине натуральной мощности можно ориентировочно судить о пропускной способности линии электропередачи. При передаче такой мощности на линии имеет место минимальные потери мощности, режим её работы является оптимальным. При расщеплении фаз, за счёт уменьшения индуктивного сопротивления и увеличения емкостной проводимости линии, натуральная мощность увеличивается. При увеличении расстояния между проводами натуральная мощность уменьшается, и наоборот, для повышения натуральной мощности необходимо уменьшать расстояние между проводами. Наибольшей натуральной мощностью обладают кабельные линии, имеющие большую ёмкостную проводимость и малую индуктивность[15].

Пропускная способность

Под пропускной способностью линии электропередачи понимается наибольшая активная мощность трёх фаз электропередачи, которую можно передать в длительном установившемся режиме с учётом режимно-технических ограничений. Наибольшая передаваемая активная мощность электропередачи ограничена условиями статической устойчивости генераторов электрических станций, передающей и приёмной части электроэнергетической системы и допустимой мощностью по нагреву проводов линии с допустимым током. Из практики эксплуатации электроэнергетических систем следует, что пропускная способность ЛЭП 500 кВ и выше обычно определяется фактором статической устойчивости, для ЛЭП 220—330 кВ ограничения могут наступать как по условию устойчивости, так и по допустимому нагреву, 110 кВ и ниже — только по нагреву.

Характеристика пропускной способности воздушных линий электропередачи[16][17]

Uном,

кВ

Длина

линии, км

Предельная

длина при

кпд = 0,9, км

Число и площадь

сечения проводов,

мм2

Натуральная

мощность

Р нат, МВт

Пропускная способность
По устойчивости По нагреву
МВт в долях

Рнат

МВт в долях

Рнат

10(6) 5 35 2,1
20 8 1?? 7,5
35 20 1?? 15
110 80 1?? 30 50 1,67
220 150-250 400 1х300 120-135 350 2,9 280 2,3
330 200-300 700 2х300 350-360 800 2,3 760 2,2
500 300-400 1200 3х300 900 1350 1,5 1740 1,9
750 400-500 2200 5х300 2100 2500 1,2 4600 2,1
1150 400-500 3000 8х300 5300 4500 0,85 11000 2,1

ЛЭП в массовой культуре

В советские годы были созданы песни: «Что такое ЛЭП» (исп. Иосиф Кобзон), «ЛЭП-500» (исп. Юрий Пузырёв).

См. также

Литература

  • Электромонтажные работы. В 11 кн. Кн. 8. Ч. 1. Воздушные линии электропередачи: Учеб. пособие для ПТУ / Магидин Ф. А.; Под ред. А. Н. Трифонова. — М.: Высшая школа, 1991. — 208 с. — ISBN 5-06-001074-0
  • Рожкова Л. Д., Козулин В. С. Электрооборудование станций и подстанций: Учебник для техникумов. — 3-е изд., перераб. и доп. — М.: Энергоатомиздат, 1987. — 648 с.: ил. ББК 31.277.1 Р63
  • Проектирование электрической части станций и подстанций: Учеб. пособие / Петрова С. С.; Под ред. С. А. Мартынова. — Л.: ЛПИ им. М. И. Калинина, 1980. — 76 с. — УДК 621.311.2(0.75.8)
  • Федоров А. А., Попов Ю. П. Эксплуатация электрооборудования промышленных предприятий. — М.: Энергоатомиздат, 1986. — 280 с.

Примечания

  1. Номинальные напряжения, указанные в скобках, для вновь проектируемых сетей не рекомендуются. Для существующих и расширяющихся электрических сетей на номинальные напряжения 3 и 150 кВ электрооборудование должно изготовляться (см. ГОСТ 721-77).
  2. История компании. www.yantarenergo.ru. Дата обращения: 4 марта 2020. Архивировано 20 сентября 2020 года.
  3. Кашолкин Б. И., Мешалкин Е. А. Тушение пожаров в электроустановках. — М.: Энергоатомиздат, 1985. — С. 20
  4. Технические условия по проектированию автоматических установок комбинированного пожаротушения в кабельных сооружениях «НТО Пламя» — М., 2006. — С. 2
  5. Кашолкин Б. И., Мешалкин Е. А. Тушение пожаров в электроустановках. — М.:Энергоатомиздат, 1985. — С. 58.
  6. Рекомендации по расчету параметров эвакуации людей на основании положений ГОСТ 12.1.004-91 «Пожарная безопасность. Общие требования», Таблица 3.5. Дата обращения: 24 марта 2010. Архивировано 20 ноября 2015 года.
  7. Monica Heger. Superconductors Enter Commercial Utility Service. IEEE Spectrum. Дата обращения: 19 января 2012. Архивировано 14 февраля 2010 года.
  8. Энергетики переходят на сверхпроводники. Радио Свобода (2010). — «Говорится о трех миллионах метров не кабеля, а исходной ленты... Из этих лент делаются кабели, содержащие порядка 50 лент. Поэтому надо 3 миллиона метров разделить на 50 и получится около 50 километров.» Дата обращения: 27 ноября 2014. Архивировано 6 декабря 2014 года.
  9. Joseph Milton. Superconductors come of age. Nature — News. — «Jason Fredette, managing director of corporate communications at the company, says that LS Cable will use the wire to make about 20 circuit kilometres of cable as part of a programme to modernize the South Korean electricity network starting in the capital, Seoul.» Дата обращения: 19 января 2012. Архивировано 9 октября 2010 года.
  10. Процессы и аппараты химических технологий. Дата обращения: 29 июля 2012. Архивировано 22 марта 2013 года.
  11. Потери на корону // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  12. Понятов А. Вступив в эпоху электричества // Наука и жизнь. — 2020. — № 1. — С. 14.
  13. 1 2 3 Понятов А. Вступив в эпоху электричества // Наука и жизнь. — 2020. — № 1. — С. 15.
  14. Потери на излучение в длинных линиях электропередач. Дата обращения: 6 марта 2023. Архивировано 6 марта 2023 года.
  15. 4.1. Реактивные мощности и натуральная мощность линии электропередачи. Дата обращения: 8 января 2016. Архивировано из оригинала 5 декабря 2016 года.
  16. Характеристика системы передачи электрической энергии. Дата обращения: 8 января 2016. Архивировано из оригинала 10 июля 2019 года.
  17. Министерство промышленности и энергетики Российской Федерации. Приказ № 216 Об утверждении Методических рекомендаций по определению предварительных параметров выдачи мощности строящихся (реконструируемых) генерирующих объектов в условиях нормальных режимов функционирования энергосистемы, учитываемых при определении платы за технологическое присоединение таких генерирующих объектов к объектам электросетевого хозяйства (30 апреля 2008). Дата обращения: 8 января 2016. Архивировано 19 июня 2015 года.

Ссылки

Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya