Правило БаєсаУ теорії ймовірностей та її застосуваннях пра́вило Ба́єса (англ. Bayes' rule) встановлює відповідність між шансами[en] події проти події до (апріорі) та після (апостеріорі) обумовлення іншою подією . Шанси до події є просто відношенням ймовірностей цих двох подій. Апріорні шанси є відношенням безумовних, або апріорних ймовірностей, а апостеріорні шанси є відношенням умовних, або апостеріорних ймовірностей за умови події . Це відношення виражається у термінах рівня правдоподібності, або коефіцієнту Баєса, . За визначенням, це є відношенням умовних ймовірностей події у випадку та у випадку відповідно. Це правило просто стверджує: апостеріорні шанси дорівнюють добуткові апріорних шансів на коефіцієнт Баєса.[1] Коли цікавить довільно велика кількість подій , а не лише дві, це правило може бути перефразовано як апостеріорне є пропорційнім добуткові апріорного на правдоподібність, , де символ пропорційності означає, що ліва частина є пропорційною (тобто, дорівнює добуткові на сталу) до правої частини при зміні для фіксованої або заданої .[2][3] У такій формі воно йде ще від Лапласа[4] та Курно.[5][6] Правило Баєса є рівноцінним способом формулювання теореми Баєса. Якщо нам відомі шанси за та проти , то ми знаємо ймовірність . На практиці в силу ряду причин йому може віддаватися перевага перед теоремою Баєса. Правило Баєса широко використовується у статистиці, науці та інженерії, наприклад, у виборі моделі, ймовірнісних експертних системах на базі баєсових мереж, статистичних доказах[en] у судових процесах, фільтрах спаму електронної пошти тощо.[7][3] Як елементарний факт з числення ймовірностей, правило Баєса говорить нам, як пов'язані між собою безумовні та умовні ймовірності, чи то ми працюємо з частотницькою інтерпретацією ймовірності, чи то з баєсовою. При баєсовій інтерпретації воно часто застосовується у ситуації, коли та є конкурентними гіпотезами, а є деяким спостережуваним свідченням. Це правило показує, як чиєсь судження про те, чи є істинною чи , повинне уточнюватися при спостереженні свідчення .[1] ПравилоОдна подіяДля заданих подій , та правило Баєса стверджує, що умовні шанси за умови дорівнюють відособленим шансам , помноженим на коефіцієнт Баєса або рівень правдоподібності : де Тут шанси та умовні шанси, відомі також як апріорні та апостеріорні шанси, визначаються як В особливому випадку, коли та , пишуть , та використовують аналогічні скорочення для коефіцієнту Баєса та умовних шансів. Шанси за визначенням є шансами за та проти . Відтак, правило Баєса може бути записано у скороченій формі або іншими словами: апостеріорні шанси дорівнюють апріорним шансам , помноженим на рівень правдоподібності за умови інформації . Коротко, апостеріорні шанси дорівнюють апріорним шансам, помноженим на рівень правдоподібності. Це правило часто застосовується, коли та є двома конкурентними гіпотезами стосовно причини деякої події . Апріорні шанси , іншими словами, шанси проти , виражають наші початкові переконання стосовно того, чи є істинним, чи ні. Подія представляє якесь свідчення, інформацію, дані або спостереження. Рівень правдоподібності є відношенням шансів спостереження відповідно до гіпотез та . Це правило каже нам, як мають уточнюватися наші апріорні переконання стосовно того, чи є істинним, чи ні, при отриманні інформації . Багато подійЯкщо ми розглядаємо як довільну, а як незмінну, то ми можемо переписати теорему Баєса у вигляді , де символ пропорційності означає, що зі зміною при незмінній ліва частина дорівнює правій частині, помноженій на сталу. Словами — апостеріорне пропорційне апріорному, помноженому на правдоподібність. Цю версію теореми Баєса було спочатку названо «Правилом Баєса» Антуаном-Огюстеном Курно у 1843 році.[5] Курно популяризував ранішу працю Лапласа 1774 року,[4] який незалежно відкрив правило Баєса. Працю Баєса було опубліковано посмертно у 1763 році, але вона залишалася більш-менш невідомою, поки Курно не привернув увагу до неї.[6] Правилу Баєса може віддаватися перевага перед звичайним формулюванням теореми Баєса з цілого ряду причин. По-перше, воно є інтуїтивно простішим для розуміння. Інша причина полягає в тому, що в нормалізації ймовірностей іноді немає необхідності: іноді потрібно знати лише співвідношення ймовірностей. Нарешті, виконання нормалізації часто простіше здійснювати після спрощення добутку апріорного та правдоподібності шляхом вилучення будь-яких множників, що не залежать від , відтак нам не потрібно насправді обчислювати знаменник у звичайному формулюванні теореми Баєса У баєсовій статистиці правило Баєса часто застосовується із так званою некоректною апріорною ймовірністю, наприклад, рівномірним розподілом ймовірності над усіма дійсними числами. В такому випадку апріорний розподіл не існує як міра ймовірності в межах звичайної теорії ймовірності, й теорема Баєса сама по собі є не доступною. Послідовність подійПравило Баєса може застосовуватися кілька разів. Кожного разу, як ми спостерігаємо нову подію, ми уточнюємо шанси між подіями, що нас цікавлять, скажімо, та , враховуючи цю нову інформацію. Для двох подій (повідомлень, свідчень) та де В особливому випадку двох взаємодоповнюваних подій та еквівалентним записом є ВиведенняРозгляньмо два примірники теореми Баєса: Їхнє поєднання дає Тепер за визначення це означає Аналогічне виведення застосовується для зумовлювання багатьма подіями, з використанням відповідного розширення теореми Баєса. ПрикладиЧастотницький прикладРозгляньмо приклад перевірки на вживання наркотиків зі статті про теорему Баєса. Такі ж результати може бути отримано з використанням правила Баєса. Апріорні шанси того, що особа вживає наркотики, є 199 проти 1, оскільки та . Коефіцієнт Баєса у разі позитивного результату перевірки особи є на користь того, що особа вживає наркотики: це є відношення ймовірності позитивного результату для особи, що вживає наркотики, до позитивного результату особи, що їх не вживає. Апостеріорними шансами того, що особа вживає наркотики, відтак є , що є дуже близьким до . У круглих числах, лише один з трьох із тих, чия перевірка дала позитивний результат, насправді вживає наркотики. Вибір моделіПримітки
Література
|