Розподіл Больцмана справедливий тільки в тих випадках, коли . Ця умова реалізується при високих температурах.
Граничний випадок квантовомеханічних розподілів
В квантовій статистиці розподіли для ферміонів і бозонів мають різний вигляд і різні властивості. Проте при високій температурі, коли ймовірність знайти частку в будь-якому стані набагато менша за одиницю, як розподіл Фермі — Дірака так і розподіл Бозе — Ейнштейна переходять в розподіл Больцмана.
Розподіл Больцмана в класичній статистиці
В класичній статистиці частка ідеального газу має лише кінетичну енергію.
Число часток з імпульсами в проміжку визначається формулою:
,
де m — маса частки.
У випадку коли дана формула виражена через швидкості, а не через імпульси, вона носить назву розподілу Максвелла
.
Розподіл Больцмана в зовнішньому потенціальному полі
У випадку, коли частки ідеального газу перебувають у зовнішньому полі з потенціалом , це збільшує їхню
енергію. В такому випадку, розподіл Больцмана визначає залежну від координати густину часток:
.
Зокрема, у випадку газу в полі тяжіння Землі це співвідношення визначає барометричну формулу