三尖瓣线三尖瓣线(tricuspoid)也稱為施泰纳曲線(Steiner curve),是有三個尖點的圆内螺线,是一個圓繞著直徑為其三倍的圓內側無滑動滾動時,圓上一點產生的一般旋轮线 三尖瓣线也可以指有三個頂點,之間用向內彎曲的曲線相連的封閉空間,因此三尖瓣线內的空間是非凸集合[1]。 方程式三尖瓣线可以用以下的參數方程表示: 其中a是小圓的半徑,b是大圓(也就是小圓在其內側無滑動滾動)的半徑(此處b = 3a)。 在複變座標下可得
上述的t可以消去,得到以下的笛卡爾座標下的方程 曲線有三個奇點,是對應的尖點。上述的參數式意味者曲線為有理曲線,也就表示其幾何虧格為零。 三尖瓣线的對偶曲線為 在原點有一個二重點,若進行一個虛軸上的旋轉y ↦ iy,曲線會變為下式,就可以看到其二重點 在實平面的原點上有二重點。 面積及周長三尖瓣线的面積為,其中a為小圓的半徑,其面積是小圓面積的兩倍[2]。 其周長為16a[2]。 歷史早在1599年時,伽利略·伽利莱及马兰·梅森就已開始研究常見的摆线,而奧勒·羅默在1674年研究齒輪的最佳外形時,也有用到摆线。李昂哈德·歐拉認為他是最早(1745年)將三尖瓣线應用在實際光學問題的人。 應用三尖瓣线有應用在許多的數學領域中,舉例如下:
相關條目参考资料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve