元数学元数学(英語:Metamathematics),又译为超数学,使用数学技术来研究数学本身的一门学科。一般来说,元数学是一种将数学作为人类意识和文化客体的科学思维或知识。更进一步来说,元数学是一种用来研究数学和数学哲学的数学。“数学的数学”是于19世纪初由通常的数学分离出来的,它最初研究的对象是在所谓的数学危机。将二者混为一谈会导致一些矛盾,典型例子有理查德悖论。 比如说,元数学的主题之一就是:分析某些数学要素是否在任意的数学系统中都是可证实或者证伪的。 许多关于数学基础与数学哲学的论说都涉及元数学的概念,它们往往不能被当作我们通常所说的“问题”来处理。元数学的基本假设是:数学的内容可以由一个形式系统获得,比如一个序理论或一个公理化集合论。 元数学与数理逻辑休戚相关,因而这两者的发展也大同小异。元数学的发端大概要追溯到弗雷格的工作:《概念文字》。大卫·希尔伯特首先引进了带有正则性的“元数学”(metamathematics with regularity)这一说法(见希尔伯特计划)。这也就是现在所说的证明论。另一个重要的现代分支是模型论。这一领域的其他重要人物有:伯特兰·罗素,斯科尔姆(Thoralf Skolem),普斯特(Emil Post),邱奇,克莱尼,蒯因,贝纳瑟拉夫(Paul Benacerraf),普特南,柴汀(Gregory Chaitin),以及最著名的塔斯基和哥德尔。特别地,哥德尔证明了:给定任意有限多条皮亚诺算术的公理,都存在一些正确的命题,无法用所给公理来证明,即所谓的哥德尔不完备定理。某种意义上来说,这一结果是迄今为止元数学与数学哲学的最高成就。 參考資料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve