加法單位元在數學裡,一個具有加法運算的集合中的加法單位元,是指不論它加上任何一個在此集合內的元素x都會等於x的元素。 基本例子如:
形式定義令N是一個在加法運算下封閉的集合。N的加法單位元即為任一個能使所有在N內的元素n有下列公式的元素e:
更多例子
證明加法單位元在一個群裡是唯一的令(G,+)是一個群,且設0和0'是在G內的兩個加法單位元,則對於所有在G內的g而言,
由上可得
故可證明 0 = 0'。 加法和乘法單位元在一個非平凡環裡是不同的令R是一個環,且假設加法單位元0和乘法單位元1會相等,即0=1。設r為於R內的任一元素,則
其表示R必須是平凡的,亦即R={0}。再依照換質位法,即可得出若R不是平凡的,則0不會等於1的結論。 另見外部連結
參考文獻
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve