勞厄方程式勞厄方程式,為德國科學家馬克斯·馮·勞厄於1912年所提出[1],勞厄方程式的三個等式,說明了入射光被晶格繞射的情形,简化后可以得到布拉格定律。 定義考慮三個向量: 、 、 ,並設 及分別為入射方向與反射方向的方向單位向量。波分別被面 O 與 A 、 O 與 B 、 O 與 C 繞射(同相)將:
當這三個方程式同時成立,入射波將從(h/n, k/n, l/n)面反射。 這三個方程式可歸納成,當繞射產生時,r . (Sh/λ - So/λ)為整數且滿足:
即
上式說明OH = Sh/λ - So/λ為倒晶格向量,且 h, k, l 為整數,是為繞射產生的倒晶格模式。 意义由衍射理论导出的 。可以用劳厄方程给出。劳厄方程之所以有价值,是因为其在几何描述上的优势。 劳厄方程有一个简单而清晰的几何诠释。第一个方程告诉我们, 将位于以a1为轴的某个圆锥上;第二个方程告诉我们: 也将位于以a2为轴的某个圆锥上,第三个方程也要求 位于以a3为轴的某个圆锥上。 因此,反射的必须同时满足这三个方程。这就表明,三个锥必须截交于一条公共的射线,这个条件非常苛刻,只有在非常巧合的情况下才能满足。要得到这种特殊的“巧合”,除开纯粹的偶然性以外,一般则需要对波长或者晶体取向进行连续的扫描、搜索。 相關請參考P. P. Ewald, 1962, IUCr, 50 Years of X-ray Diffraction, Section 4, page 52. 參考文獻
Information related to 勞厄方程式 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve