奇異數 (數論)
在數論中,奇異數(或稱奇怪數)是指不是半完全數的豐數,[1] 也就是說此自然數之所有真因數(即小於此自然數之正因數)之和比此數自身大(豐數的定義),但其真因數不論如何組合,其和都不等於此自然數(因此不是半完全數)。 許多的豐數都是半完全數,如12的真因數有1, 2, 3, 4, 6,總和為16>12,因此為一豐數,但2+4+6=12,因此12也是半完全數,大多數的豐數都可以找到部份真因數,使其和等於本身。若豐數的真因數和都不等於本身,即為奇異數。 舉例最小的奇異數是70,其真因數有1, 2, 5, 7, 10, 14及35,總和為74,其中無法找到一組子集合,使其總和為70。因此70是奇異數。 奇異數有無窮多個,最小的一些奇異數是:70, 836, 4030, 5830, 7192, 7912, 9272, 10430, ... (OEIS數列A006037)。 性質未解決的數學問題:是否存在奇數的奇異數?
存在無限多個奇異數[2]。例如,70p為奇異數,針對大於等於149的質數p都成立。實際上,奇異數集合的自然密度為正值[3]。 目前已知的奇異數均為偶數,還不確定是否存在奇數的奇異數,若其存在,其數值必大於1021。[4] Sidney Kravitz證明針對正整數k,Q是超過2k的質數,且 也是2k的質數,則 是奇異數[5]。 Sidney Kravitz根據此公式,找到最大的奇異數 參照
参见 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve