泛性质在数学的很多分支,经常用“在给定某些条件下存在唯一态射”这种形式的性质来定义一些构造。这种性质统称为泛性质(英語:Universal property),有时也称为万有性。范畴论研究泛性质。 了解泛性质最好先研究一些例子。如:群积、直和、自由群、积拓扑、斯通-切赫紧致、张量积、反极限、直极限、核与上核、拉回、推出、等子等。 定义设U : D → C为一函子,X为C的对象。从X到U的泛态射为偶(A, φ),其中A为D的对象,φ : X → U(A)为C中满足如下泛性质的态射:
态射g的存在保证A具有足够的性质,其唯一性又限制A不再有额外的性质。 使用对偶原则可得上述的对偶概念:从U到X的泛态射为偶(A, φ),其中A为D的对象,φ : U(A) → X为C的态射,满足如下泛性质:
注:有时后者也称为上泛态射。 性质存在性和唯一性具有泛性质的构造不一定存在。给定上述函子U和对象X,从X到U(或从U到X)的泛态射不一定存在。然而,若其存在,则该构造在同构下唯一。也就是说,若(A′, φ′)为另一个满足该条件的泛态射,则存在唯一的同构态射g : A → A′满足φ′ = U(g)φ。用(A′, φ′)代替定义中的(Y, f)易知该结论成立。 其它等价定义泛态射可通过其它途径定义。设U为从D到C的函子,X为C的对象,则下列语句等价: 其对偶语句也同样等价: 与伴随函子的关系设(A1, φ1)为从X1到U的泛态射,(A2, φ2)为从X2到U的泛态射。根据泛性质,对任意态射h : X1 → X2,存在唯一态射g : A1 → A2使得下图可交换: 若对任意C的对象Xi存在到U的泛态射,则映射Xi Ai和h g确定一个函子 V : C → D。此时,φi确定从1C(C上的恒等函子)到U V的一个自然变换。因此(V, U)构成一对伴随函子,V左伴随U,U右伴随V。 利用对偶原则同样可得U的右伴随函子V : C → D。 事实上,所有的伴随函子都产生与类似的泛构造。设F和G为一对伴随函子,单位元为&eta,上单位元为&epsilon(定义见伴随函子)。任意C和D的对象存在泛态射。
泛构造的概念广于伴随函子:泛构造类似优化问题,伴随函子存在当且仅当该优化问题对任何C的对象(或对任何D的对象)均存在解。 举例张量代数设C为域K上的向量空间范畴 K-Vect,D为K上的代数范畴(假定满足unitall和结合律),U为将代数映射为所基向量空间的遗忘函子。 给定任何基于K的向量空间V,构造V的张量代数T(V)。此张量代数的泛性质体现为偶(T(V), i)(其中i : V → T(V)为一inclusion map)是从V到U的泛态射。 由于此方法适用于任何V,因此T为从K-Vect到K-Alg的函子,且为U的左伴随。 核设D为一存在零态射的范畴(如群范畴),f : X → Y为D的一态射。f的核为满足下列条件的任意态射k : K → X:
为理解上述同泛态射的关系,定义D中态射的范畴C,对象为D的所有态射f : X → Y,从f : X → Y到g : S → T的态射为一对态射α : X → S和β : Y → T构成的偶(α, β),满足βf = fα。 定义函子F : D → C,映射对象K到零态射0KK : K → K,映射态射r : K → L到偶(r, r)。 给定D的态射f : X → Y(看作C的对象)及D的对象K。从F(K)到f的态射为偶(k, l)满足f k = l 0KK = 0KY(此即为上述核的泛性质)。可以看出,“从F到f的泛态射”即为核的泛性质。 极限与上极限极限与上极限为范畴论中重要的泛构造。设J为小范畴、C为范畴,J看作为C的索引范畴。记CJ为相应的函子范畴。对角函子 Δ : C → CJ 将C中每个对象N映射到常函子Δ(N) : J → C to N (i.e. 对任意X属于J有Δ(N)(X) = N). 给定函子F : J → C(看作CJ的对象),F的极限,若存在,即为从Δ到F的泛态射。由对偶性质,F的上极限为F到Δ的泛态射。 用途使用泛性质定义构造有如下优点:
历史Pierre Samuel在1948年给出了多种拓扑结构的泛性质。布尔巴基大量使用了其结论。丹尼尔·阚与1958年独立发现了与其密切相关的伴随函子概念。 参考文献
|