焦散线微分几何中,焦散线(caustic)指由流形反射或折射的射线的包络线。这与几何光学中的焦散现象有关。射线的来源可以是点(辐射点,radiant)或来自无穷远处某点的平行射线,这时要指定射线的方向向量。 一般来说,应用于辛几何与奇点理论中的焦散线指拉格朗日映射的临界值集,其中是拉格朗日子流形L到辛流形M的拉格朗日浸入,是辛流形M的拉格朗日纤维化。焦散是拉格朗日纤维化基空间B的子集。[1] 解释集中的光线(如阳光)会灼伤人。“焦散”(caustic)一词来自希腊语καυστός“烧焦”,途经拉丁语causticus“燃烧”。 光线照射在酒杯上时,就会出现焦散现象。玻璃杯会投射出阴影,也会产生弯曲的亮区。在理想情况下(包括平行光射入时)会产生肾形光斑。[2][3]光线穿过波浪照射在水体上时,通常会形成波纹状的焦散线。 彩虹是人们熟悉的另一种焦散现象。[4][5]雨滴对光的散射会使不同波长的光折射成半径不同的弧线,从而产生彩虹。 回光线回光线(catacaustic)是反射的情形。 对于点光源,它是辐射点正交(orthotomic)的渐屈线。 平面平行光源情况:假设方向向量是,镜面曲线参数化为。某点的法向量为;方向向量的反射为(法向量需要特殊归一化处理) 将找到的反射向量的分量视作切线 使用最简单的包络线形式 这可能不美观,但给出了中的线性系统,因此获得回光线的参数是很简单的,用克莱姆法则就可以。 例子令方向向量为(0,1),镜面为 则 且有解;即光线平行于抛物镜面的轴线进入,会通过焦点反射。 另见参考文献
外部链接 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve