线搜索最优化问题中,线搜索 是一种寻找目标函数 的局部最小值 的近似方法。它是最基础的迭代近似方法之一,另一种是置信域方法。 线搜索近似首先找到一个使目标函数 下降的方向,然后计算 应该沿着这个方向移动的步长。下降方向可以通过多种方法计算,比如梯度下降法,牛顿法和拟牛顿法。计算出的步长不一定是精确的。 应用举例以一个梯度法作为例子,其中第四步中使用到了线搜索。
在第四步的线搜索中算法可以通过解方程 来精确地,或者只是通过寻找一个 的充分下降来粗略地最小化 。前者的一个例子是共轭梯度法。后者被称作不精确线搜索,有很多种实现方法,比如回溯线搜索或者是使用沃尔夫条件。 与其它的最优化方法类似,线搜索也可以跟模拟退火结合以越过一些局部最小值。 算法直接搜索方法这种方法里,必须先把最小值括在一个范围内,也就是说这个算法必须能够找到 和 使得要找的最小值在它们之间。接着通过计算这个区间内部的两个点 和 ,把区间分成几个子区间,抛弃掉外面两个点中与 和 中函数值更小的那个点不相邻的那一个。接下来的每一步中,只需要计算 额外的一个内部的点。在各种划分区间的方法中,[1] 黄金分割法是一种特别简单而高效的方法,它的划分比例在搜索进行中始终保持不变。
参阅参考
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve