梯度下降法梯度下降法(英語:Gradient descent)是一个一阶最优化算法,通常也称为最陡下降法,但是不該與近似積分的最陡下降法(英語:Method of steepest descent)混淆。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。 描述梯度下降方法基于以下的观察:如果实值函数在点处可微且有定义,那么函数在点沿着梯度相反的方向 下降最多。 因而,如果 对于一個足够小数值時成立,那么。 考虑到这一点,我们可以从函数的局部极小值的初始估计出发,并考虑如下序列 使得
因此可得到 如果顺利的话序列收敛到期望的局部极小值。注意每次迭代步长可以改变。 右侧的图片示例了这一过程,这里假设定义在平面上,并且函数图像是一个碗形。蓝色的曲线是等高线(水平集),即函数为常数的集合构成的曲线。红色的箭头指向该点梯度的反方向。(一点处的梯度方向与通过该点的等高线垂直)。沿着梯度下降方向,将最终到达碗底,即函数局部極小值的点。 例子梯度下降法处理一些复杂的非线性函数会出现问题,例如Rosenbrock函數 其最小值在处,数值为。但是此函数具有狭窄弯曲的山谷,最小值就在这些山谷之中,并且谷底很平。优化过程是之字形的向极小值点靠近,速度非常缓慢。 下面这个例子也鲜明的示例了"之字"的上升(非下降),这个例子用梯度上升(非梯度下降)法求的局部极大值(非局部极小值)。 缺点梯度下降法的缺點包括:[1]
上述例子也已体现出了这些缺点。 参阅参考文献
外部链接 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve