Share to: share facebook share twitter share wa share telegram print page

S型函数

S型函數的曲線圖形
S型函數在複數域的分布圖形

S型函数(英語:sigmoid function,或稱乙狀函數)是一種函数,因其函數圖像形状像字母S得名。其形狀曲線至少有2個焦點,也叫“二焦點曲線函數”。S型函数是有界可微的实函数,在实数范围内均有取值,且导数恒为非负[1],有且只有一个拐点。S型函数和S型曲线指的是同一事物。

逻辑斯谛函数是一种常见的S型函数,其公式如下:[1]

其级数展开为:

其他S型函數案例見下。在一些學科領域,特別是人工神经网络中,S型函數通常特指邏輯斯諦函數。

常見的S型函數

一些S型函數的比較,圖中的函數皆以原點斜率為1的方式歸一化。

所有連續非負的凸形函數的積分都是S型函數,因此許多常見概率分布累积分布函数會是S型函數。一個常見的例子是误差函数,它是正态分布的累积分布函数。

参考文献

  1. ^ 1.0 1.1 Han, Jun; Morag, Claudio. The influence of the sigmoid function parameters on the speed of backpropagation learning. Mira, José; Sandoval, Francisco (编). From Natural to Artificial Neural Computation. Lecture Notes in Computer Science 930. 1995: 195–201. ISBN 978-3-540-59497-0. doi:10.1007/3-540-59497-3_175. 
  • Mitchell, Tom M. Machine Learning. WCB–McGraw–Hill. 1997. ISBN 0-07-042807-7. . In particular see "Chapter 4: Artificial Neural Networks" (in particular pp. 96–97) where Mitchell uses the word "logistic function" and the "sigmoid function" synonymously – this function he also calls the "squashing function" – and the sigmoid (aka logistic) function is used to compress the outputs of the "neurons" in multi-layer neural nets.
  • Humphrys, Mark. Continuous output, the sigmoid function. [2015-02-01]. (原始内容存档于2015-02-02).  Properties of the sigmoid, including how it can shift along axes and how its domain may be transformed.

参见

Kembali kehalaman sebelumnya