乳铁蛋白
乳铁蛋白
有效结构
PDB
直系同源检索:PDBe , RCSB
PDB查询代码列表
1B0L , 1BKA , 1CB6 , 1DSN , 1EH3 , 1FCK , 1H43 , 1H44 , 1H45 , 1HSE , 1L5T , 1LCF , 1LCT , 1LFG , 1LFH , 1LFI , 1LGB , 1N76 , 1SQY , 1U62 , 1VFD , 1VFE , 1XV4 , 1XV7 , 1Z6V , 1Z6W , 2BJJ , 2DP4 , 2GMC , 2GMD , 2HD4 , 2PMS
代号
LTF ; GIG12; HLF2; LF 扩展标识
遗传学 :150210 鼠基因 :96837 同源基因 :1754 GeneCards : LTF Gene EC編號
3.4.21.-
物种
人类
小鼠 Entrez
4057
17002 Ensembl
ENSG00000012223
ENSMUSG00000032496 UniProt
P02788
P08071 mRNA序列
NM_001199149
NM_008522 蛋白序列
NP_001186078
NP_032548 基因位置
Chr 3: 46.48 – 46.53 Mb
Chr 9: 111.02 – 111.04 Mb PubMed 查询
[1]
[2]
乳铁蛋白 (Lactoferrin,LF)又称乳运铁蛋白 (Lactotransferrin,LTF),属于运铁蛋白 的一种,为多功能球状醣蛋白 ,其分子量介于 76~80 kDa不等,广泛存在于各种分泌液中,如牛奶 、唾液 、眼淚 和鼻涕 。乳铁蛋白也存在于中期的嗜中性粒细胞 中,并由一些腺泡细胞分泌。乳铁蛋白可以从牛奶中提取或利用重組DNA技术 获得。人的初乳 的乳铁蛋白浓度最高,其次是人类的乳汁,牛奶中浓度最低(150毫克/升)[ 1] 。
乳铁蛋白是人体免疫系统 的组分之一,它具有抗菌活性(抗细菌剂,抗真菌剂 ),是先天防御的一部分,主要存在于粘膜中。[ 1] 乳铁蛋白保护婴儿使其免受细菌等病原侵害。 [ 2] [ 3] 乳铁蛋白还相互DNA 和RNA 、 多糖和肝素 之间相互作用 ,并在这些这些受体-配体 复合物中表现出一定的生理功能。
历史
早在1939年就已经出现牛奶中含铁红蛋白發现的报道;[ 4] 然而,由于当时没有具备有效純化该蛋白质的方法,对于此蛋白性质的研究受到的限制。直到1960年左右才有比较详细的研究出现。研究中测定获取了乳铁蛋白的分子量,等电点 ,吸收光谱值,并且发现了每个蛋白质分子中有铁原子的存在[ 5] [ 6] 。该乳铁蛋白从牛奶获得,含有铁元素,并具有类似与血清中运铁蛋白 的结构和化学性质。尽管在一些早期的出版物使用过lactotransferrin 这个名称,但在1961年被正式命名为乳铁蛋白。后来的研究还发现,蛋白质不仅限于牛奶。此外,在1961年,发现乳铁蛋白的抗菌作用与其结合铁的特性有关[ 7]
结构与性质
分子结构
乳铁蛋白是一种运铁蛋白 ,它参与铁元素的跨膜转运,控制血液中铁离子的平衡和分泌。[ 6] [ 8] 它存在于人类和其他哺乳动物的奶汁、[ 6] 血浆 和嗜中性粒细胞中,是哺乳动物的分泌物:如唾液 、胆 、泪水 和胰腺 ,成分中主要蛋白质。乳汁的乳铁蛋白的浓度不同,从人的初乳 中的7g/L到成熟乳中的1g/L。
X -射线衍射 表明,乳铁蛋白是一个多肽链,此肽链包含约700个氨基酸和两个同源球状域:N-环和C-环。N-环对应于肽链中的第1-333个氨基酸残基,而C-环与第345-692个氨基酸残基对应,这两个域的两端由一段短链α-螺旋相连接。 [ 9] [ 10] 每个环由两个子域(亚域):N1、N2和C1、C2 组成,并包含一个铁结合位点和一个糖基化位点 。乳铁蛋白糖基化程度可能会有所不同,因此,乳铁蛋白的分子量介于 76~80 kDa不等。乳铁蛋白的稳定性与其糖基化程度成成相关关系[ 11] 。
乳铁蛋白属于碱性蛋白质,其等电点 为8.7。它以两种形式存在:富含铁形式的holo-lactoferrin 和不含铁形式的apo-lactoferrin 。两者有不同的三级结构:apo-lactoferrin 的特点是有一个“开放式”的N-环和一个“封闭式”的C-环,而holo-lactoferrin 两个环都是“封闭式”的。[ 12]
每个乳铁蛋白分子能可逆地结合两个铁,锌 ,铜 或其它金属离子。[ 13] 两个结合位点分别位于两个蛋白球状域中。每个离子结合六个配体:四个来自肽链中的配体( 2个酪氨酸 残基、1个组氨酸 残基和1个天冬氨酸 残基)和2个碳酸根 或碳酸氢根 离子。
乳铁蛋白与铁元素形成红色的复合物; 其对铁的亲和力比 运铁蛋白高出300倍。[ 14] 在弱酸性介质中的亲和力增加。[ 15] 当出现炎症 时,这种特性有利于铁从运铁蛋白转移至乳铁蛋白中,因为炎症由于乳酸 和其他有机酸的积累常常造成组织的pH值降低。人乳中乳铁蛋白的饱和铁浓度约为10%~30%(100%代表所有的乳铁蛋白分子中含有2个铁原子)。表明乳铁蛋白不仅涉及铁、锌和铜离子的转运,而且能够调节这些离子的吸收量。[ 16] 溶液中锌和铜离子的存在并不影响乳铁蛋白的铁结合能力,甚至可能增加。
聚合形式
乳铁蛋白在血浆和分泌液中存在不同的聚合物的形式:单体 形式到四聚体形式。乳铁蛋白更倾向于以聚合物的形式存在于体内外,特别是当浓度很高时。[ 15] 研究发现,在生理条件下是四聚体是乳铁蛋白的主要存在形式。 [ 17] [ 18] [ 19]
乳铁蛋白的低聚合形态主要取决于蛋白质的浓度,而多聚合形态的形成则强烈受到 Ca2+ 的影响。Ca2+ 存在时, 当浓度为 10−10 ~10−11 M 时,乳铁蛋白主要以单体形式存在;而但浓度提高到 10−9 ~−10 M 后,单体会转化成为四聚体形式。[ 17] [ 20] 一般血液中乳铁蛋白的浓度都处于单体和四聚体过渡浓度之间,因此乳铁蛋白在血液中存在单体和四聚体的聚合态。乳铁蛋白的许多功能特性取决于其寡聚态形式。比如,乳铁蛋白单体可以紧密地结合DNA ,而四聚体形态却没有这样的特性。
生物功能
乳铁蛋白属于先天免疫系统 的成分物质。除了能够结合和运输铁离子的主要功能外,乳铁蛋白还具有抗菌,抗病毒,抗寄生虫,催化,防癌抗癌,抗过敏和辐射防护的功能和属性。.[ 21]
抗菌活性
目前对乳铁蛋白抗菌活性的研究最深入:它能够结合铁元素,从而能够减少了细菌对铁这种必需元素的吸收,影响细菌的生长。[ 22] 对抗菌作用的另一种作用机制与微生物细胞表面受体 有关。乳铁蛋白结合到细菌壁的脂多糖上,其氧化型铁离子能够通过形成过氧化物 将细菌氧化。这会影响细胞膜的通透性并导致细胞( 裂解 )。[ 22]
虽然乳铁蛋白还具有其他与铁元素无关的抗菌机制,比如刺激增强免疫吞噬作用, [ 23] 上文所述外的细菌膜的相互作用是最主要最热门的研究方向。[ 24] 乳铁蛋白,不仅破坏了膜,甚至渗透进入细胞。乳铁蛋白能够结合到细菌壁上,与其分子特定的肽段:乳铁蛋白肽 相关。此肽段位于乳铁蛋白的N-环端,并经由一些蛋白酶,如胰蛋白酶,在体外降解乳铁蛋白N端产生。[ 25] [ 26] 相关研究表明,乳铁蛋白能够瞄准 H(+ )-ATP酶并干扰胞膜上的质子传递 ,从而对微生物形成致命的威胁.[ 27]
抗病毒活性
乳铁蛋白是一种基于DNA/RNA的人类和动物病毒的体外型广谱抗病毒物质。[ 28] 可抵抗:I型和II型单纯疱疹病毒,[ 29] [ 30] 巨细胞病毒,[ 31] ]人类免疫性缺陷病毒 ,[ 30] [ 32] 丙肝炎病毒[ 33] [ 34] 汉坦病毒 , 轮状病毒 , I型脊髓灰质炎病毒 ,[ 35] 人类呼吸道合胞病毒 和鼠白血病病毒 。[ 26]
乳铁蛋白的抗病毒活性研究得最多的机制是它能够阻挡病毒粒子进入靶细胞。许多病毒往往结合到靶细胞膜的脂蛋白 上,然后再侵入细胞内。 [ 34] 乳铁蛋白结合,从而击退病毒粒子相同脂蛋白。无铁型乳铁蛋白 apo-lactoferrin 在这方面的效力高于富铁型 holo-lactoferrin 。另外具有抗(细)菌活力的乳铁蛋白肽并没有抗病毒的特性。[ 28]
除了与细胞壁的相互作用,乳铁蛋白也能直接与病毒粒结合, 如肝炎病毒 。[ 34] 这种抗病毒机制同样在另一种类型细胞中抵抗轮状病毒 valaviruses 时得到验证。[ 26]
乳铁蛋白也抑制病毒在胞内复制。[ 26] [ 32] 另外,一些间接的抗病毒方式:增加自然杀伤性细胞、粒性白细胞 和巨噬细胞 的活力/数量,在病毒感染前期发挥关键作用,如急性呼吸系统综合症 (SARS), [ 36]
抗真菌活性
乳铁蛋白与乳铁蛋白肽能够抑制须癣毛癣菌 ,而须癣毛癣菌是多种皮肤病,如皮肤癣 的病原真菌。[ 37] 乳铁蛋白还能够杀灭 白色念珠菌 candida albicans –– 一种引起人类条件性口腔、生殖道 感染的二倍体 型 真菌 (酵母 的一种形态)。[ 38] [ 39] 多年来氟康唑 一直用于杀灭 白色念珠菌 , 由此此真菌也对氟康唑产生了 抗药性 。然而,若将乳铁蛋白与氟康唑联合使用(先用乳铁蛋白后氟康唑按顺序与念珠菌共孵化),将一样能够杀灭已具有抗药性的念珠菌, 比如: C. glabrata, C. krusei, C. parapsilosis and C. tropicalis 以及 C. albicans (白色念珠菌)。[ 38] 此外,发现 乳铁蛋白肽 的抗真菌活力要比乳铁蛋白高。特别是合成性肽(synthetic peptide) 1-11 乳铁蛋白肽比自然的乳铁蛋白(native lactoferricin)显示出更大的抗真菌活力。 [ 38]
采用饮用水给药的方法(在饮用水中加入乳铁蛋白)给患有 口腔溃疡 且免疫低下的小鼠摄入乳铁蛋白,发现实验组口腔中白色念珠菌的数量与其舌头上的受损区面积都减少了。[ 40] 另外一些口腔服药形式的动物显示出在近 消化道 区域致病菌的数量也在减少。一种混合了乳铁蛋白、溶菌酶 与 introakonazol 的药物,也能够完全清除 HIV (人类免疫性缺陷病毒)感染者体内的白色念珠菌(HIV感染者体内的念珠菌对其他抗真菌药物具有抗药性)。[ 41] 而其他非抗真菌类药物抗菌能力的低效正表明出乳铁蛋白能消灭真菌的性质。 [ 42] 相比与抗细菌与抗病毒机制,对乳铁蛋白抗真菌的机制还相知甚少。一般认为乳铁蛋白能够破坏白色念珠菌的细胞壁并结合到细胞膜上起抗真菌作用。[ 39]
与核酸交互
乳铁蛋白能与核酸结合. 从牛奶中分离出来的乳铁蛋白中,包含有3.3%的 RNA .[ 17]
另外, 乳铁蛋白更倾向于结合双链 DNA , 这个性质有助于用 亲和色谱法 分离并纯化乳铁蛋白. 只要在色谱柱上固定含DNA的 吸附剂 , 例如固定有单链DNA的 琼脂糖 色谱柱, 就能够达到分离纯化的效果.[ 43]
催化酶活力
乳铁蛋白能水解 RNA , 是一种外分泌型 核糖核酸酶 (RNase), 它能够特异性地水解RNA上的 嘧啶 位点. 在小鼠体内, 人乳 核糖核酸酶 (Milk RNase) 抑制致 乳癌 的 反转录病毒 的复制.[ 44] 在印度西部的帕西(Parsi )地区,这里妇女乳腺中 核糖核酸酶 含量显著低于其他地区, 这个群体中 乳癌 患病率高达平均水平的3倍多.[ 45] 因此, 人乳 核糖核酸酶 , 特别是乳铁蛋白, 在抑制反转录型致病病毒方面具有重要作用.
基因序列
目前, 在11种哺乳动物中, 至少发现了60种乳铁蛋白的基因序列.[ 46] 许多动物的乳铁蛋白 终止密码子 为TAA,而小鼠 为TGA. 终止密码子 的丢失 、 插入 与突变 影响乳铁蛋白编码区 序列长度: 其长度在2,055bp到2,190bp之间变化。物种种间的乳铁蛋白 基因多态性 的多样性比种内丰富。氨基酸序列在不同物种间也表现出了差异: 智人 的 8th AA (第8号氨基酸), 小鼠 与 Capra hircus 的 6th AA , Bos taurus 的 10th AA 以及 Sus scrofa 的 20th AA 。氨基酸序列的多样性可能预示着不同乳铁蛋白间具有功能上的差别。[ 46]
人类乳铁蛋白基因 LTF 位于3号 染色体 的3q21-q23位点上. 牛乳铁蛋白基因 编码区 含有17个 外显子 , 其长度约 34,500bp. 牛的外显子与其他家族的 运铁蛋白 基因外显子长度相似, 而 内含子 长度却不同. 相似的外显子长度与蛋白质功能片段域(the domains of the protein molecule)分布, 预示着乳铁蛋白基因的进化有可能源自于复制(duplication). [ 47] 研究乳铁蛋白 编码区 基因多态性 有助于选择能够免疫 乳腺炎 的牛幼仔.[ 48]
乳铁蛋白受体
乳铁蛋白受体 在乳铁蛋白内化 方面有重要作用, 受体还能增强乳铁蛋白吸收铁离子的能力。随着年龄增长,受体基因的表达 在 十二指肠 中减增加,而空肠 (jejunum )中减少.[ 49]
囊状纤维症
人的肺脏 与唾液 中都含有大量的抗菌混合物。其中包括乳过氧化物酶 系统(lactoperoxidase system),并产生乳铁蛋白与 Hypothiocyanite (囊状纤维症 患者缺失的物质).[ 50] 乳铁蛋白能够阻止细菌形成生物膜 。[ 51] [ 52] 而如若乳铁蛋白活力下降,将导致抗菌能力下降而微生物生物膜的合成量将增加,这种状况出现在囊状纤维症 病人身上。[ 53] 这些发现展示了乳铁蛋白在人体免疫,特别是肺脏部位,抗菌方面的重要作用。[ 54]
乳铁蛋白 with hypothiocyanite已经被欧洲药品管理局 (EMEA )与美国食品药品管理局 (FDA)评证为孤儿药品 。
参考文献
^ 1.0 1.1 Sánchez L, Calvo M, Brock JH. Biological role of lactoferrin . Arch. Dis. Child. 1992, 67 (5): 657–61. PMC 1793702 . PMID 1599309 . doi:10.1136/adc.67.5.657 .
^ Levin RE, Kalidas S, Gopinadhan P, Pometto A. Food biotechnology . Boca Raton, FL: CRC/Taylor & Francis. 2006: 1028. ISBN 0-8247-5329-1 .
^ Animal Breeding: Technology for the 21st Century (Modern Genetics,) . Boca Raton: CRC. 1998: 191. ISBN 90-5702-292-3 .
^ M. Sorensen and S. P. L. Sorensen, Compf. rend. trav. lab. Carlsberg (1939) 23, 55, cited by Groves (1960)
^ Groves, Merton L. Journal of the American Chemical Society. 1960, 82 (13): 3345. doi:10.1021/ja01498a029 .
^ 6.0 6.1 6.2 Johansson B; Virtanen, Artturi I.; Tweit, Robert C.; Dodson, R. M. Isolation of an iron-containing red protein from human milk (PDF) . Acta Chem. Scand. 1960, 14 (2): 510–512 [2011-07-20 ] . doi:10.3891/acta.chem.scand.14-0510 . (原始内容 (PDF) 存档于2011-07-06). (页面存档备份 ,存于互联网档案馆 )
^ Naidu AS. Lactoferrin: natural, multifunctional, antimicrobial . Boca Raton: CRC Press. 2000: 1–2. ISBN 0-8493-0909-3 .
^ Birgens HS. Lactoferrin in plasma measured by an ELISA technique: evidence that plasma lactoferrin is an indicator of neutrophil turnover and bone marrow activity in acute leukaemia. Scand J Haematol. 1985, 34 (4): 326–31. PMID 3858982 . doi:10.1111/j.1600-0609.1985.tb00757.x .
^ Baker HM, Anderson BF, Kidd RD, Shewry SC, Baker EN. Lactoferrin three-dimensional structure: a framework for interpreting function. Shimazaki, Kei-ichi (编). Lactoferrin: structure, function, and applications: proceedings of the 4th International Conference on Lactoferrin: Structure, Function, and Applications, held in Sapporo, Japan, 18–22 May 1999 . Amsterdam: Elsevier. 2000. ISBN 0-444-50317-X .
^ Baker EN, Baker HM. Molecular structure, binding properties and dynamics of lactoferrin . Cell. Mol. Life Sci. 2005, 62 (22): 2531–9. PMID 16261257 . doi:10.1007/s00018-005-5368-9 .
^ Håkansson A, Zhivotovsky B, Orrenius S, Sabharwal H, Svanborg C. Apoptosis induced by a human milk protein . Proc. Natl. Acad. Sci. U.S.A. 1995, 92 (17): 8064–8. PMC 41287 . PMID 7644538 . doi:10.1073/pnas.92.17.8064 .
^ Jameson GB, Anderson BF, Norris GE, Thomas DH, Baker EN. Structure of human apolactoferrin at 2.0 Å resolution. Refinement and analysis of ligand-induced conformational change. Acta Crystallogr. D Biol. Crystallogr. 1998, 54 (Pt 6 Pt 2): 1319–35. PMID 10089508 . doi:10.1107/S0907444998004417 .
^ Levay PF, Viljoen M. Lactoferrin: a general review. Haematologica. 1995, 80 (3): 252–67. PMID 7672721 .
^ Mazurier J, Spik G. Comparative study of the iron-binding properties of human transferrins. I. Complete and sequential iron saturation and desaturation of the lactotransferrin. Biochim. Biophys. Acta. 1980, 629 (2): 399–408. PMID 6770907 .
^ 15.0 15.1 Broc JHk, De Sousa M. Iron in immunity, cancer, and inflammation. New York: Wiley. 1989. ISBN 0-471-92150-5 .
^ Shongwe MS, Smith CA, Ainscough EW, Baker HM, Brodie AM, Baker EN. Anion binding by human lactoferrin: results from crystallographic and physicochemical studies. Biochemistry. 1992, 31 (18): 4451–8. PMID 1581301 . doi:10.1021/bi00133a010 .
^ 17.0 17.1 17.2 Bennett RM, Davis J. Lactoferrin interacts with deoxyribonucleic acid: a preferential reactivity with double-stranded DNA and dissociation of DNA-anti-DNA complexes. J. Lab. Clin. Med. 1982, 99 (1): 127–38. PMID 6274982 .
^ Bagby GC, Bennett RM. Feedback regulation of granulopoiesis: polymerization of lactoferrin abrogates its ability to inhibit CSA production. Blood. 1982, 60 (1): 108–12. PMID 6979357 .
^ Mantel C, Miyazawa K, Broxmeyer HE. Physical characteristics and polymerization during iron saturation of lactoferrin, a myelopoietic regulatory molecule with suppressor activity. Adv. Exp. Med. Biol. 1994, 357 : 121–32. PMID 7762423 .
^ Furmanski P, Li ZP, Fortuna MB, Swamy CV, Das MR. Multiple molecular forms of human lactoferrin. Identification of a class of lactoferrins that possess ribonuclease activity and lack iron-binding capacity . J. Exp. Med. 1989, 170 (2): 415–29. PMC 2189405 . PMID 2754391 . doi:10.1084/jem.170.2.415 .
^ Lactoferrin: a review (PDF) . Veterinarni Medicina. 2008, 53 : 457 [2011-07-31 ] . (原始内容 (PDF) 存档于2020-01-09). (页面存档备份 ,存于互联网档案馆 )
^ 22.0 22.1 Farnaud S, Evans RW. Lactoferrin--a multifunctional protein with antimicrobial properties. Mol. Immunol. 2003, 40 (7): 395–405. PMID 14568385 . doi:10.1016/S0161-5890(03)00152-4 .
^ Xanthou M. Immune protection of human milk. Biol. Neonate. 1998, 74 (2): 121–33. PMID 9691154 . doi:10.1159/000014018 .
^ Odell EW, Sarra R, Foxworthy M, Chapple DS, Evans RW. Antibacterial activity of peptides homologous to a loop region in human lactoferrin. FEBS Lett. 1996, 382 (1–2): 175–8. PMID 8612745 . doi:10.1016/0014-5793(96)00168-8 .
^ Kuwata H, Yip TT, Yip CL, Tomita M, Hutchens TW. Bactericidal domain of lactoferrin: detection, quantitation, and characterization of lactoferricin in serum by SELDI affinity mass spectrometry. Biochem. Biophys. Res. Commun. 1998, 245 (3): 764–73. PMID 9588189 . doi:10.1006/bbrc.1998.8466 .
^ 26.0 26.1 26.2 26.3 Sojar HT, Hamada N, Genco RJ. Structures involved in the interaction of Porphyromonas gingivalis fimbriae and human lactoferrin. FEBS Lett. 1998, 422 (2): 205–8. PMID 9490007 . doi:10.1016/S0014-5793(98)00002-7 .
^ Andrés MT, Fierro JF. Antimicrobial mechanism of action of transferrins: Selective inhibition of H+-ATPase . Antimicrob. Agents Chemother. 2010, 54 (10): 4335–42. PMC 2944611 . PMID 20625147 . doi:10.1128/AAC.01620-09 .
^ 28.0 28.1 van der Strate BW, Beljaars L, Molema G, Harmsen MC, Meijer DK. Antiviral activities of lactoferrin. Antiviral Res. 2001, 52 (3): 225–39. PMID 11675140 . doi:10.1016/S0166-3542(01)00195-4 .
^ Fujihara T, Hayashi K. Lactoferrin inhibits herpes simplex virus type-1 (HSV-1) infection to mouse cornea . Arch. Virol. 1995, 140 (8): 1469–72. PMID 7661698 . doi:10.1007/BF01322673 .
^ 30.0 30.1 Giansanti F, Rossi P, Massucci MT, Botti D, Antonini G, Valenti P, Seganti L. Antiviral activity of ovotransferrin discloses an evolutionary strategy for the defensive activities of lactoferrin . Biochem. Cell Biol. 2002, 80 (1): 125–30. PMID 11908636 . doi:10.1139/o01-208 .
^ Harmsen MC, Swart PJ, de Béthune MP, Pauwels R, De Clercq E, The TH, Meijer DK. Antiviral effects of plasma and milk proteins: lactoferrin shows potent activity against both human immunodeficiency virus and human cytomegalovirus replication in vitro . J. Infect. Dis. 1995, 172 (2): 380–8. PMID 7622881 . doi:10.1093/infdis/172.2.380 .
^ 32.0 32.1 Puddu P, Borghi P, Gessani S, Valenti P, Belardelli F, Seganti L. Antiviral effect of bovine lactoferrin saturated with metal ions on early steps of human immunodeficiency virus type 1 infection . Int. J. Biochem. Cell Biol. 1998, 30 (9): 1055–62. PMID 9785469 . doi:10.1016/S1357-2725(98)00066-1 .
^ Azzam HS, Goertz C, Fritts M, Jonas WB. Natural products and chronic hepatitis C virus. Liver Int. 2007, 27 (1): 17–25. PMID 17241377 . doi:10.1111/j.1478-3231.2006.01408.x .
^ 34.0 34.1 34.2 Nozaki A, Ikeda M, Naganuma A, Nakamura T, Inudoh M, Tanaka K, Kato N. Identification of a lactoferrin-derived peptide possessing binding activity to hepatitis C virus E2 envelope protein. J. Biol. Chem. 2003, 278 (12): 10162–73. PMID 12522210 . doi:10.1074/jbc.M207879200 .
^ Arnold D, Di Biase AM, Marchetti M, Pietrantoni A, Valenti P, Seganti L, Superti F. Antiadenovirus activity of milk proteins: lactoferrin prevents viral infection. Antiviral Res. 2002, 53 (2): 153–8. PMID 11750941 . doi:10.1016/S0166-3542(01)00197-8 .
^ Reghunathan R, Jayapal M, Hsu LY, Chng HH, Tai D, Leung BP, Melendez AJ. Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome . BMC Immunol. 2005, 6 : 2. PMC 546205 . PMID 15655079 . doi:10.1186/1471-2172-6-2 .
^ Wakabayashi H, Uchida K, Yamauchi K, Teraguchi S, Hayasawa H, Yamaguchi H. Lactoferrin given in food facilitates dermatophytosis cure in guinea pig models. J. Antimicrob. Chemother. 2000, 46 (4): 595–602. PMID 11020258 . doi:10.1093/jac/46.4.595 .
^ 38.0 38.1 38.2 Lupetti A, Paulusma-Annema A, Welling MM, Dogterom-Ballering H, Brouwer CP, Senesi S, Van Dissel JT, Nibbering PH. Synergistic activity of the N-terminal peptide of human lactoferrin and fluconazole against Candida species . Antimicrob. Agents Chemother. 2003, 47 (1): 262–7. PMC 149030 . PMID 12499200 . doi:10.1128/AAC.47.1.262-267.2003 .
^ 39.0 39.1 Viejo-Díaz M, Andrés MT, Fierro JF. Modulation of in vitro fungicidal activity of human lactoferrin against Candida albicans by extracellular cation concentration and target cell metabolic activity . Antimicrob. Agents Chemother. 2004, 48 (4): 1242–8. PMC 375254 . PMID 15047526 . doi:10.1128/AAC.48.4.1242-1248.2004 .
^ Takakura N, Wakabayashi H, Ishibashi H, Teraguchi S, Tamura Y, Yamaguchi H, Abe S. Oral lactoferrin treatment of experimental oral candidiasis in mice . Antimicrob. Agents Chemother. 2003, 47 (8): 2619–23. PMC 166093 . PMID 12878528 . doi:10.1128/AAC.47.8.2619-2623.2003 .
^ Masci, JR. Complete response of severe, refractory oral candidiasis to mouthwash containing lactoferrin and lysozyme. AIDS (London, England). 2000, 14 (15): 2403–4. PMID 11089630 . doi:10.1097/00002030-200010200-00023 .
^ Kuipers ME, de Vries HG, Eikelboom MC, Meijer DK, Swart PJ. Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates . Antimicrob. Agents Chemother. 1999, 43 (11): 2635–41. PMC 89536 . PMID 10543740 .
^ Rosenmund A, Kuyas C, Haeberli A. Oxidative radioiodination damage to human lactoferrin . Biochem. J. 1986, 240 (1): 239–45. PMC 1147399 . PMID 3827843 .
^ McCormick JJ, Larson LJ, Rich MA. RNase inhibition of reverse transcriptase activity in human milk. Nature. 1974, 251 (5477): 737–40. PMID 4139659 . doi:10.1038/251737a0 .
^ Das MR, Padhy LC, Koshy R, Sirsat SM, Rich MA. Human milk samples from different ethnic groups contain RNase that inhibits, and plasma membrane that stimulates, reverse transcription. Nature. 1976, 262 (5571): 802–5. PMID 60710 . doi:10.1038/262802a0 .
^ 46.0 46.1 Jing-Fen Kang, Xiang-Long Li, Rong-Yan Zhou, Lan-Hui Li, Fu-Jun Feng and Xiu -Li Guo. Bioinformatics Analysis of Lactoferrin Gene for Several Species. Biochemical Genetics. 2008, 46 (5–6): 312–322. PMID 18228129 . doi:10.1007/s10528-008-9147-9 .
^ Seyfert HM, Tuckoricz A, Interthal H, Koczan D, Hobom G. Structure of the bovine lactoferrin-encoding gene and its promoter . Gene. 1994, 143 (2): 265–9. PMID 8206385 . doi:10.1016/0378-1119(94)90108-2 .
^ O'Halloran F, Bahar B, Buckley F, O'Sullivan O, Sweeney T, Giblin L. Characterisation of single nucleotide polymorphisms identified in the bovine lactoferrin gene sequences across a range of dairy cow breeds. Biochimie. 2009, 91 (1): 68–75. PMID 18554515 . doi:10.1016/j.biochi.2008.05.011 .
^ Liao Y, Lopez V, Shafizadeh TB, Halsted CH, Lönnerdal B. Cloning of a pig homologue of the human lactoferrin receptor: expression and localization during intestinal maturation in piglets . Comp Biochem Physiol a Mol Integr Physiol. 2007, 148 (3): 584–90. PMC 2265088 . PMID 17766154 . doi:10.1016/j.cbpa.2007.08.001 .
^ Moskwa P, Lorentzen D, Excoffon KJ, Zabner J, McCray PB, Nauseef WM, Dupuy C, Bánfi B. A novel host defense system of airways is defective in cystic fibrosis . Am. J. Respir. Crit. Care Med. 2007, 175 (2): 174–83. PMC 2720149 . PMID 17082494 . doi:10.1164/rccm.200607-1029OC .
^ Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 2000, 407 (6805): 762–4. PMID 11048725 . doi:10.1038/35037627 .
^ Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A component of innate immunity prevents bacterial biofilm development. Nature. 2002, 417 (6888): 552–5. PMID 12037568 . doi:10.1038/417552a .
^ Rogan MP, Taggart CC, Greene CM, Murphy PG, O'Neill SJ, McElvaney NG. Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J. Infect. Dis. 2004, 190 (7): 1245–53. PMID 15346334 . doi:10.1086/423821 .
^ Rogan MP, Geraghty P, Greene CM, O'Neill SJ, Taggart CC, McElvaney NG. Antimicrobial proteins and polypeptides in pulmonary innate defence . Respir. Res. 2006, 7 : 29. PMC 1386663 . PMID 16503962 . doi:10.1186/1465-9921-7-29 .
外部链接