截角正十六胞体
截角正十六胞体是均匀多胞体之一。它是通过截断正十六胞体的每一个角得到的。它有24个胞:8个正八面体和16个截角四面体。它的顶点图是一个四角锥,一个顶点周围有一个正八面体和四个截角四面体。
结构
截角正十六胞体由16个截角四面体和8个正二十面体。截角四面体胞通过六边形面互相结合,并且通过三角形面来结合正八面体胞。每个正八面体胞结合8个 截角四面体胞。
投影
考克斯特平面正交投影
H4
|
-
|
F4
|
[30]
|
[20]
|
[12]
|
H3
|
A2 / B3 / D4
|
A3 / B2
|
[10]
|
[6]
|
[4]
|
三维正交投影
|
|
截角正十六胞体的三维正交投影,对着一个正八面体胞。最中间的正八面体是红色的,其余的正八面体是黄色的,截角四面体是透明的绿色的。
|
参考文献
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter (页面存档备份,存于互联网档案馆), editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- Four-dimensional Archimedean Polytopes (页面存档备份,存于互联网档案馆) (German), Marco Möller, 2004 PhD dissertation [1] (页面存档备份,存于互联网档案馆) m58 (页面存档备份,存于互联网档案馆) m59 (页面存档备份,存于互联网档案馆) m53 (页面存档备份,存于互联网档案馆)
- Convex uniform polychora based on the hecatonicosachoron (120-cell) and hexacosichoron (600-cell) - Model 36, 39, 41, George Olshevsky.
- Klitzing, Richard. 4D uniform polytopes (polychora). bendwavy.org. o3o3x5x - thi, o3x3x5o - xhi, x3x3o5o - tex
- Four-Dimensional Polytope Projection Barn Raisings (页面存档备份,存于互联网档案馆) (A Zometool construction of the truncated 120-cell), George W. Hart
|
|