Sejarah garis bujur adalah catatan upaya para astronom, kartografer, dan navigator selama berabad-abad untuk menemukan cara menentukan garis bujur.
Pengukuran garis bujur memiliki peran penting bagi dunia pemetaan dan navigasi, khususnya untuk menyediakan navigasi laut yang aman. Oleh karena itu, diperlukan pengetahuan yang mumpuni mengenai garis lintang dan garis bujur. Penemuan metode yang akurat dan andal untuk menentukan garis bujur membutuhkan studi dan penelitian selama berabad-abad, dan melibatkan beberapa pemikir ilmiah terbesar dalam sejarah manusia. Saat ini, masalah bujur telah dipecahkan hingga taraf akurasi sentimeter melalui navigasi satelit.
Pengetahuan tentang garis bujur sebelum ditemukannya teleskop
Eratosthenes pada abad ke-3 SM pertama kali mengusulkan sistem lintang dan bujur untuk peta dunia. Meridian utamanya (garis bujur) melewati Iskandariah dan Rhodes, sementara paralelnya (garis lintang) tidak diberi jarak secara teratur, tetapi melewati lokasi yang diketahui, sering kali dengan mengorbankan garis lurus.[1] Pada abad ke-2 SM Hipparchus menggunakan sistem koordinat sistematis, berdasarkan pembagian lingkaran menjadi 360°, untuk menentukan tempat secara unik di Bumi.[2]:31 Jadi, bujur dapat dinyatakan sebagai derajat timur atau barat meridian utama, seperti yang kita lakukan hari ini (meskipun meridian utama berbeda). Ia juga mengusulkan metode penentuan garis bujur dengan membandingkan waktu lokal gerhana bulan di dua tempat yang berbeda, untuk mendapatkan perbedaan garis bujur di antara keduanya.[2]:11 Metode ini tidak terlalu akurat, mengingat keterbatasan jam yang tersedia, dan jarang dilakukan – mungkin hanya sekali, menggunakan gerhana Arbela tahun 330 SM.[3] Tetapi metodenya bagus, dan ini adalah pengakuan pertama bahwa garis bujur dapat ditentukan dengan pengetahuan waktu yang akurat.
Klaudius Ptolemaeus, pada abad ke-2 M, mendasarkan sistem pemetaannya pada perkiraan jarak dan arah yang dilaporkan oleh para pelancong.[4]:543[5]:90 Sampai saat itu, semua peta menggunakan kotak persegi panjang dengan garis lintang dan garis bujur sebagai garis lurus yang berpotongan tegak lurus. Untuk wilayah yang luas, ini mengarah pada distorsi yang tidak dapat diterima, dan untuk peta dunia yang dihuninya, Ptolemaeus menggunakan proyeksi (untuk menggunakan istilah modern) dengan paralel melengkung yang mengurangi distorsi. Tidak ada peta (atau manuskrip karyanya) yang lebih tua dari abad ke-13, tetapi dalam risalahnya yang berjudul Geografi, ia memberikan instruksi terperinci dan koordinat lintang dan bujur untuk ratusan lokasi yang cukup untuk membuat ulang peta. Sementara sistem Ptolemaeus cukup beralasan, data aktual yang digunakan memiliki kualitas yang sangat bervariasi, yang menyebabkan banyak ketidakakuratan dan distorsi.[6][4]:551–553[7] Terlepas dari kesulitan dalam memperkirakan jarak dan arah bujursangkar, yang paling penting dari ini adalah perkiraan berlebihan yang sistematis dari perbedaan garis bujur. Jadi dari tabel Ptolemaeus, perbedaan Bujur antara Gibraltar dan Sidon adalah 59° 40', dibandingkan dengan nilai modern 40° 23', sekitar 48% terlalu tinggi. Luccio (2013) telah menganalisis perbedaan ini, dan menyimpulkan bahwa banyak kesalahan muncul dari penggunaan Ptolemaeus dari perkiraan ukuran bumi yang jauh lebih kecil daripada yang diberikan oleh Eratosthenes – 500 stadia ke derajat daripada 700 (meskipun Eratosthenes tidak akan telah menggunakan derajat). Mengingat kesulitan ukuran astronomis bujur di zaman klasik, sebagian besar jika tidak semua nilai Ptolemaeus akan diperoleh dari ukuran jarak dan dikonversi ke bujur menggunakan nilai 500. Hasil Eratosthenes lebih mendekati nilai sebenarnya daripada Ptolemaeus.[8]
Astronom Hindu kuno mengetahui metode penentuan garis bujur dari gerhana bulan, dengan asumsi bumi bulat. Metode ini dijelaskan dalam Sûrya Siddhânta, sebuah risalah bahasa Sanskerta tentang astronomiIndia yang diperkirakan berasal dari akhir abad ke-4 atau awal abad ke-5 M.[9] Garis bujur mengacu pada meridian utama yang melewati Avantī, Ujjain modern. Posisi relatif terhadap meridian ini dinyatakan dalam perbedaan panjang atau waktu, tetapi tidak dalam derajat, yang tidak digunakan di India saat ini. Tidak jelas apakah metode ini benar-benar digunakan dalam praktik.
Cendekiawan Islam mengetahui karya Ptolemaeus setidaknya dari abad ke-9 M ketika terjemahan pertama Geografi ke dalam bahasa Arab dibuat. Terjemahan tersebut dijunjung tinggi, meskipun kesalahannya diketahui.[10] Salah satu perkembangannya adalah pembuatan tabel lokasi geografis, dengan garis lintang dan garis bujur, yang ditambahkan ke materi yang disediakan oleh Ptolemaeus, dan dalam beberapa kasus memperbaikinya.[11] Dalam kebanyakan kasus, metode yang digunakan untuk menentukan garis bujur tidak diberikan, tetapi ada beberapa akun yang memberikan rinciannya. Pengamatan simultan dari dua gerhana bulan di dua lokasi dicatat oleh al-Battāni pada tahun 901, membandingkan Antakya dengan Raqqa. Hal ini memungkinkan perbedaan garis bujur antara kedua kota ditentukan dengan kesalahan kurang dari 1°. Ini dianggap sebagai yang terbaik yang dapat dicapai dengan metode yang tersedia saat itu – pengamatan gerhana dengan mata telanjang, dan penentuan waktu setempat menggunakan astrolab untuk mengukur ketinggian yang sesuai bagi "jam bintang".[12][13]Al-Bīrūnī, pada awal abad ke-11, juga menggunakan data gerhana tetapi mengembangkan metode alternatif yang melibatkan bentuk awal triangulasi. Untuk dua lokasi yang berbeda garis bujur dan garis lintangnya, jika garis lintang dan jarak antara keduanya diketahui, serta ukuran bumi, dimungkinkan untuk menghitung perbedaan garis bujur. Dengan metode ini, al-Bīrūnī memperkirakan perbedaan garis bujur antara Baghdad dan Ghazni menggunakan perkiraan jarak dari para pelancong melalui dua rute yang berbeda (dan dengan penyesuaian yang agak sewenang-wenang untuk kemiringan jalan). Hasil untuk perbedaan garis bujur antara kedua kota berbeda sekitar 1° dari nilai modern.[14] Mercier (1992) mencatat bahwa ini adalah peningkatan substansial atas Ptolomaeus dan bahwa peningkatan lebih lanjut yang sebanding dalam akurasi tidak akan terjadi sampai abad ke-17 di Eropa.[14]:188
Sementara pengetahuan Ptolemaeus (dan lebih umum tentang sains dan filsafat Yunani) tumbuh di dunia Islam, itu menurun di Eropa. Ringkasan John Kirtland Wright (1925) suram: "Kita mungkin melewati geografi matematika periode Kristen [di Eropa] sebelum 1100; tidak ada penemuan yang dibuat, juga tidak ada upaya untuk menerapkan hasil penemuan yang lebih tua. ... Ptolemaeus dilupakan dan kerja keras orang-orang Arab di bidang ini masih belum diketahui".[15]:65 Tidak semua hilang atau terlupakan; Bede dalam De naturum rerum-nya menegaskan kebulatan bumi. Tetapi argumennya adalah argumen Aristoteles, diambil dari Plinius. Bede tidak menambahkan apa pun yang asli.[16][17] Ada lebih banyak catatan di periode abad pertengahan kemudian. Wright (1923) mengutip deskripsi Walcher dari Malvern tentang gerhana bulan di Italia (19 Oktober 1094), yang terjadi sesaat sebelum fajar. Sekembalinya ke Inggris, ia membandingkan catatan dengan biarawan lain untuk menetapkan waktu pengamatan mereka, yaitu sebelum tengah malam. Perbandingannya terlalu biasa untuk memungkinkan pengukuran perbedaan garis bujur, tetapi catatan tersebut menunjukkan bahwa prinsipnya masih dipahami.[18]:81 Pada abad ke-12, tabel astronomi disiapkan untuk sejumlah kota di Eropa, berdasarkan karya al-Zarqālī di Toledo. Ini harus disesuaikan dengan meridian masing-masing kota, dan tercatat bahwa gerhana bulan 12 September 1178, digunakan untuk menetapkan perbedaan garis bujur antara Toledo, Marseilles, dan Hereford. Tabel Hereford juga menambahkan daftar lebih dari 70 lokasi, banyak di dunia Islam, dengan garis bujur dan garis lintangnya. Ini mewakili peningkatan besar pada tabulasi Ptolemaeus yang serupa. Misalnya, garis bujur Ceuta dan Tirus dinyatakan sebagai 8° dan 57° (timur meridian Kepulauan Canaria), perbedaan 49°, dibandingkan dengan nilai modern 40,5°, perkiraan yang terlalu tinggi kurang dari 20% .[18]:87-88 Secara umum, periode abad pertengahan kemudian ditandai dengan peningkatan minat geografi, dan kemauan untuk melakukan pengamatan, dirangsang baik oleh peningkatan perjalanan (termasuk haji dan Perang Salib) dan ketersediaan sumber-sumber Islam dari kontak dengan Spanyol dan Afrika Utara.[19][20] Pada akhir periode abad pertengahan, karya Ptolemaeus langsung tersedia dengan terjemahan yang dibuat di Florence pada akhir abad ke-14 dan awal abad ke-15.[21]
Abad ke-15 dan ke-16 adalah masa penjelajahan dan penaklukanPortugal dan Spanyol. Secara khusus, kedatangan orang Eropa di Dunia Baru menimbulkan pertanyaan tentang di mana mereka sebenarnya. Kristoforus Kolumbus melakukan dua upaya untuk menggunakan gerhana bulan untuk menemukan garis bujurnya. Yang pertama adalah di Pulau Saona, sekarang di Republik Dominika, selama pelayaran keduanya. Dia menulis: "Pada tahun 1494, ketika saya berada di Pulau Saona, yang berdiri di ujung timur Pulau Española (yaitu Hispaniola), ada gerhana bulan pada tanggal 14 September, dan kami melihat ada perbedaan lebih dari lima jam setengah antara sana [Saona] dan Cape S. Vincente, di Portugal".[22] Dia tidak dapat membandingkan pengamatannya dengan pengamatan di Eropa, dan diasumsikan bahwa dia menggunakan tabel astronomi untuk referensi. Yang kedua berada di pantai utara Jamaika pada 29 Februari 1504 (selama pelayaran keempatnya). Penentuan bujurnya menunjukkan kesalahan besar masing-masing 13 dan 38° BB.[23] Randles (1985) mendokumentasikan pengukuran garis bujur oleh Portugis dan Spanyol antara tahun 1514 dan 1627 baik di Amerika dan Asia. Kesalahan berkisar antara 2-25°.[24]
Teleskop dan jam
Pada tahun 1608 sebuah paten diajukan kepada pemerintah di Belanda untuk teleskop pembiasan. Gagasan itu diambil oleh, antara lain, Galileo Galilei yang membuat teleskop pertamanya pada tahun berikutnya dan memulai serangkaian penemuan astronomi yang mencakup satelit Jupiter, fase Venus, dan resolusi Bima Sakti menjadi bintang individu. Selama setengah abad berikutnya, peningkatan optik dan penggunaan pemasangan terkalibrasi, kisi optik, dan mikrometer untuk menyesuaikan posisi mengubah teleskop dari perangkat observasi menjadi alat pengukuran yang akurat.[26][27][28][29] Hal tersebut juga sangat meningkatkan jangkauan peristiwa yang dapat diamati untuk menentukan garis bujur.
Perkembangan teknis penting kedua untuk penentuan garis bujur adalah jam pendulum, yang dipatenkan oleh Christiaan Huygens pada tahun 1657.[30] Hal ini memberikan peningkatan akurasi sekitar 30 kali lipat dari jam mekanis sebelumnya – jam pendulum terbaik akurat hingga sekitar 10 detik per hari.[31] Sejak awal, Huygens menginginkan jamnya digunakan untuk penentuan garis bujur di laut.[32][33] Namun, jam bandul tidak mentolerir gerakan kapal dengan cukup baik, dan setelah serangkaian percobaan, disimpulkan bahwa pendekatan lain akan diperlukan. Masa depan jam bandul akan berada di darat. Bersama dengan instrumen teleskopik, mereka akan merevolusi astronomi observasional dan kartografi di tahun-tahun mendatang.[34] Huygens juga yang pertama menggunakan pegas keseimbangan sebagai osilator dalam jam kerja, dan ini memungkinkan dibuatnya penunjuk waktu portabel yang akurat. Tetapi baru setelah karya John Harrison jam seperti itu menjadi cukup akurat untuk digunakan sebagai kronometer laut.[35]
Tata cara penentuan garis bujur
Perkembangan teleskop dan jam yang akurat meningkatkan jangkauan metode yang dapat digunakan untuk menentukan garis bujur. Dengan satu pengecualian (deklinasi magnetik) semuanya bergantung pada prinsip umum, yaitu menentukan waktu absolut dari suatu peristiwa atau pengukuran dan membandingkan waktu lokal yang sesuai di dua lokasi berbeda. (Mutlak di sini mengacu pada waktu yang sama untuk pengamat di mana pun di bumi.) Setiap jam perbedaan waktu lokal sesuai dengan perubahan 15 derajat bujur (360 derajat dibagi 24 jam).
Siang lokal didefinisikan sebagai waktu di mana matahari berada pada titik tertinggi di langit. Ini sulit untuk ditentukan secara langsung, karena gerakan matahari yang tampak hampir horizontal pada siang hari. Pendekatan yang biasa dilakukan adalah mengambil titik tengah antara dua waktu di mana matahari berada pada ketinggian yang sama. Dengan cakrawala yang tidak terhalang, titik tengah antara matahari terbit dan terbenam dapat digunakan.[36] Pada malam hari waktu setempat dapat diperoleh dari rotasi semu bintang-bintang di sekitar kutub langit, baik mengukur ketinggian bintang yang sesuai dengan sextant, atau transit bintang melintasi meridian menggunakan perangkat singgah.[37]
Untuk menentukan ukuran waktu mutlak, gerhana bulan terus digunakan. Metode lain yang diusulkan termasuk:
Jarak bulan
Ini adalah usulan paling awal yang pertama kali diusulkan dalam sebuah surat oleh Amerigo Vespucci mengacu pada pengamatan yang dibuatnya pada tahun 1499.[38][39][38][39] Metode ini diterbitkan oleh Johannes Werner pada tahun 1514,[40] dan dibahas secara rinci oleh Petrus Apianus pada tahun 1524.[41] Metode ini bergantung pada gerakan benda. bulan relatif terhadap bintang "tetap", yang menyelesaikan sirkuit 360° dalam rata-rata 27,3 hari (satu bulan lunar), memberikan pergerakan yang diamati lebih dari 0,5°/jam. Dengan demikian pengukuran sudut yang akurat diperlukan karena 2 menit busur (1/30 °) perbedaan sudut antara bulan dan bintang yang dipilih sesuai dengan perbedaan 1 ° dalam bujur – 60 mil laut (110 km) di khatulistiwa.[42] Metode ini juga membutuhkan tabel yang akurat, yang rumit untuk dibangun, karena harus memperhitungkan paralaks dan berbagai sumber ketidakteraturan dalam orbit bulan. Baik alat ukur maupun tabel astronomi tidak cukup akurat pada awal abad ke-16. Upaya Vespucci untuk menggunakan metode tersebut menempatkannya di 82° Barat Cadiz padahal sebenarnya ia kurang dari 40° Barat Cadiz, di pantai utara Brasil.[38]
Satelit Jupiter
Pada tahun 1612, setelah menentukan periode orbit empat satelit paling terang Jupiter (Io, Europa, Ganymede, dan Callisto), Galileo mengusulkan bahwa dengan pengetahuan yang cukup akurat tentang orbitnya, seseorang dapat menggunakan posisi mereka sebagai jam universal, yang memungkinkan penentuan garis bujur. Dia mengerjakan masalah ini dari waktu ke waktu selama sisa hidupnya.
Metode ini membutuhkan teleskop, karena bulan tidak terlihat dengan mata telanjang. Untuk digunakan dalam navigasi laut, Galileo mengusulkan penggunaan celatone, sebuah perangkat berupa helm dengan teleskop yang dipasang untuk mengakomodasi gerakan pengamat di kapal.[43] Ini kemudian digantikan dengan gagasan sepasang cangkang hemisfera bersarang yang dipisahkan oleh rendaman minyak. Ini akan menyediakan platform yang memungkinkan pengamat untuk tetap diam saat kapal meluncur di bawahnya, seperti platform gimball. Untuk menentukan waktu dari posisi bulan-bulan yang diamati, sebuah Jovilab ditawarkan; ini adalah komputer analog yang menghitung waktu dari posisi dan mendapatkan namanya dari kemiripannya dengan astrolab.[44] Masalah praktisnya parah dan metode ini tidak pernah digunakan di laut.
Di darat, metode ini terbukti berguna dan akurat. Contoh awal adalah pengukuran bujur situs bekas observatorium Tycho Brahe di Pulau Hven. Jean Picard di Hven dan Cassini di Paris melakukan pengamatan selama 1671 dan 1672, dan memperoleh nilai 42 menit 10 detik (waktu) timur Paris, sesuai dengan 10° 32' 30", sekitar 12 menit busur (1/5° ) lebih tinggi dari nilai modern.[45]
Apulsa dan okultasi
Dua metode yang diusulkan bergantung pada gerakan relatif bulan dan bintang atau planet. Sebuah tepukan adalah jarak paling tidak terlihat antara dua objek, okultasi terjadi ketika bintang atau planet lewat di belakang bulan - pada dasarnya jenis gerhana. Waktu dari salah satu peristiwa ini dapat digunakan sebagai ukuran waktu absolut dengan cara yang sama seperti gerhana bulan. Edmond Halley menjelaskan penggunaan metode ini untuk menentukan bujur Balasore di India, menggunakan pengamatan bintang Aldebaran ("Mata Banteng", menjadi bintang paling terang di konstelasi Taurus) pada tahun 1680, dengan kesalahan lebih dari setengah derajat.[46] Dia menerbitkan risalah yang lebih rinci tentang metode ini pada tahun 1717.[47] Penentuan garis bujur menggunakan okultasi planet, Jupiter, dijelaskan oleh James Pound pada tahun 1714.[48]
Kronometri
Orang yang pertama menyarankan bepergian dengan jam untuk menentukan garis bujur, pada tahun 1530, adalah Gemma Frisius, seorang dokter, matematikawan, kartografer, filsuf, dan pembuat instrumen dari Belanda. Jam akan diatur ke waktu lokal dari titik awal yang garis bujurnya diketahui, dan garis bujur tempat lain dapat ditentukan dengan membandingkan waktu setempat dengan waktu jam.[49][50]:259 Meskipun metode ini sangat baik dan sebagian dirangsang oleh peningkatan terbaru dalam akurasi jam mekanis, metode ini masih membutuhkan ketepatan waktu yang jauh lebih akurat daripada yang tersedia di zaman Frisius. Istilah kronometer tidak digunakan sampai abad berikutnya, dan akan lebih dari dua abad sebelum ini menjadi metode baku untuk menentukan garis bujur di laut.[51]
Deklinasi magnetik
Metode ini didasarkan pada pengamatan bahwa jarum kompas pada umumnya tidak menunjuk tepat ke utara. Sudut antara utara sejati dan arah jarum kompas (utara magnetis) disebut deklinasi atau variasi magnetik, dan nilainya bervariasi dari satu tempat ke tempat lain. Beberapa penulis mengusulkan bahwa ukuran deklinasi magnetik dapat digunakan untuk menentukan garis bujur. Mercator menyarankan bahwa kutub utaramagnet adalah sebuah pulau di garis bujur Azores, di mana deklinasi magnetik, pada waktu itu, mendekati nol. Gagasan-gagasan ini didukung oleh Michiel Coignet dalam risalahnya yang berjudul Petunjuk Bahari.[50]
Halley membuat studi ekstensif tentang variasi magnetik selama perjalanannya di pinkaHMS Paramour. Dia menerbitkan grafik pertama yang menunjukkan garis isogonika - garis deklinasi magnetik yang sama - pada tahun 1701.[52] Salah satu tujuan grafik adalah untuk membantu dalam menentukan garis bujur, tetapi metode itu akhirnya gagal karena perubahan deklinasi magnetik dari waktu ke waktu terbukti terlalu besar dan terlalu tidak dapat diandalkan untuk menyediakan dasar navigasi.
Survei lahan dan telegrafi
Survei di darat terus menggunakan campuran metode triangulasi dan astronomi, yang ditambahkan dengan penggunaan kronometer setelah tersedia. Penggunaan awal kronometer dalam surveilahan dilaporkan oleh Simeon Borden dalam surveinya di Massachusetts pada tahun 1846. Setelah memeriksa nilai bujur Nathaniel Bowditch untuk State House di Boston, ia menentukan garis bujur First Congregational Church di Pittsfield, mengangkut 38 kronometer pada 13 kunjungan antara dua lokasi.[53] Kronometer juga diangkut dengan jarak yang jauh lebih jauh. Misalnya, Survei Pantai AS mengorganisir ekspedisi pada tahun 1849 dan 1855 di mana total lebih dari 200 kronometer dikirim antara Liverpool dan Boston, bukan untuk navigasi, tetapi untuk mendapatkan penentuan yang lebih akurat dari garis bujur Observatorium di Cambridge, Massachusetts, dan dengan demikian menambatkan Survei AS ke meridian Greenwich.[54]:5
Telegraf kerja pertama didirikan di Inggris oleh Charles Wheatstone dan William Fothergill Cooke pada tahun 1839, dan di Amerika Serikat oleh Samuel Morse pada tahun 1844. Gagasan menggunakan telegraf untuk mengirimkan sinyal waktu untuk penentuan garis bujur diusulkan oleh François Arago ke Morse pada tahun 1837,[55] dan pengujian pertama dari gagasan ini dilakukan oleh Charles Wilkes dari Angkatan Laut AS pada tahun 1844, di atas garis Morse antara Washington dan Baltimore. Dua kronometer disinkronkan, dan dibawa ke dua kantor telegraf untuk melakukan pengujian dan memeriksa apakah waktu ditransmisikan secara akurat.[56]
Metode ini segera digunakan secara praktis untuk penentuan garis bujur, khususnya oleh Survei Pantai A.S., dan untuk jarak yang semakin jauh ketika jaringan telegraf menyebar ke seluruh Amerika Utara. Banyak tantangan teknis yang dihadapi. Awalnya, operator mengirim sinyal secara manual dan mendengarkan klik pada saluran dan membandingkannya dengan detak jam, memperkirakan sepersekian detik. Jam pemutus sirkuit dan perekam pena diperkenalkan pada tahun 1849 untuk mengotomatisasi proses ini, yang menghasilkan peningkatan besar dalam akurasi dan produktivitas.[57]:318–330[58]:98–107 Dengan pendirian sebuah observatorium di Quebec pada tahun 1850, di bawah arahan Edward David Ashe, jaringan penentuan garis bujur telegrafik dilakukan untuk Kanada bagian timur dan dihubungkan dengan jaringan Harvard dan Chicago.[59][60]
Perluasan besar-besaran ke "jaring telegrafik bujur" disebabkan oleh penyelesaian kabel telegraf transatlantik yang berhasil antara S.W. Irlandia dan Nova Scotia pada tahun 1866. Sebuah kabel dari Brest di Prancis ke DuxburyMassachusetts diselesaikan pada tahun 1870 dan memberikan kesempatan untuk memeriksa hasil melalui rute yang berbeda. Dalam interval tersebut, bagian jaringan berbasis darat telah meningkat, termasuk penghapusan repeater. Perbandingan selisih antara Greenwich dan Cambridge Massachusetts menunjukkan perbedaan antara pengukuran waktu 0,01 detik, dengan kemungkinan kesalahan ±0,04 detik, setara dengan 45 kaki. Menyimpulkan jaring pada tahun 1897, Charles Schott menyajikan tabel dari lokasi utama di seluruh Amerika Serikat yang lokasinya telah ditentukan oleh telegrafi, dengan tanggal dan pasangan, dan kemungkinan kesalahan. Jaring diperluas ke Amerika Utara-Barat dengan koneksi telegraf ke Alaska dan Kanada barat. Hubungan telegrafik antara Dawson City, Yukon, Fort Egbert, Alaska, dan Seattle dan Vancouver digunakan untuk memberikan penentuan ganda posisi meridian ke-141 di mana ia melintasi Sungai Yukon, dan dengan demikian memberikan titik awal untuk survei perbatasan antara Amerika Serikat dan Kanada ke utara dan selatan selama 1906-1908.
Di sebelah timur Greenwich, penentuan garis bujur dilakukan secara telegrafik di lokasi-lokasi di Mesir, termasuk Suez, sebagai bagian dari pengamatan transit Venus tahun 1874 yang diarahkan oleh Sir George Airy, Astronom Kerajaan Inggris.[66][67] Pengamatan telegrafik yang dilakukan sebagai bagian dari Survei Trigonometri Besar India, termasuk Madras, dikaitkan dengan Aden dan Suez pada tahun 1877.[68][67] Pada tahun 1875, garis bujur Vladivostok di Siberia timur ditentukan oleh koneksi telegrafik dengan Saint Petersburg. Angkatan Laut AS menggunakan Suez, Madras, dan Vladivostok sebagai titik jangkar untuk rantai penentuan yang dibuat pada tahun 1881-1882, yang meluas melalui Jepang, Tiongkok, Filipina, dan Singapura.[69]
Jaringan telegrafik mengelilingi dunia pada tahun 1902 dengan koneksi Australia dan Selandia Baru ke Kanada melalui All Red Line. Ini memungkinkan penentuan ganda garis bujur dari timur dan barat, yang disepakati dalam satu detik busur (1/15 detik waktu).[70]
Jaring telegrafik bujur kurang penting di Eropa Barat, yang sebagian besar telah disurvei secara rinci menggunakan triangulasi dan pengamatan astronomi. Tetapi "Metode Amerika" digunakan di Eropa, misalnya dalam serangkaian pengukuran untuk menentukan perbedaan garis bujur antara observatorium Greenwich dan Paris dengan akurasi yang lebih tinggi daripada yang tersedia sebelumnya.[71]
Telegrafi nirkabel digunakan untuk memperluas dan menyempurnakan jaringan telegrafik garis bujur, memberikan potensi akurasi yang lebih besar, dan menjangkau lokasi yang tidak terhubung ke jaringan telegraf kabel. Penentuan awal adalah bahwa antara Potsdam dan The Brocken di Jerman, jarak sekitar 100 mil (160 km), pada tahun 1906.[74] Pada tahun 1911, Prancis menentukan perbedaan garis bujur antara Paris dan Bizerte di Tunisia, jarak 920 mil (1.480 km), dan pada tahun 1913-14 penentuan transatlantik dibuat antara Paris dan Washington.[75]
Sinyal waktu nirkabel pertama untuk penggunaan kapal di laut dimulai pada tahun 1907, dari Halifax, Nova Scotia.[76] Sinyal waktu ditransmisikan dari Menara Eiffel di Paris mulai tahun 1910.[77] Sinyal ini memungkinkan navigator untuk memeriksa dan menyesuaikan kronometer mereka secara berkala.[78][79] Sebuah konferensi internasional pada tahun 1912 mengalokasikan waktu untuk berbagai stasiun nirkabel di seluruh dunia untuk mengirimkan sinyal mereka, memungkinkan jangkauan hampir di seluruh dunia tanpa gangguan antar stasiun.[77] Sinyal waktu nirkabel juga digunakan oleh pengamat darat di lapangan, khususnya surveyor dan penjelajah.[80]
Sistem navigasi radio mulai digunakan secara umum setelah Perang Dunia II. Beberapa sistem dikembangkan termasuk Sistem Navigator Decca, US coastguard LORAN-C, sistem Omega internasional, serta Alpha dan Chayka oleh Uni Soviet. Semua sistem bergantung pada transmisi dari suar navigasi tetap. Sebuah penerima kapal-board menghitung posisi kapal dari transmisi ini.[81] Sistem ini adalah yang pertama memungkinkan navigasi yang akurat ketika pengamatan astronomi tidak dapat dilakukan karena visibilitas yang buruk, dan menjadi metode yang mapan untuk pelayaran komersial sampai pengenalan sistem navigasi berbasis satelit pada awal 1990-an.
Pada tahun 1908, Nikola Tesla telah memperkirakan:
Dalam kabut atau kegelapan malam yang paling pekat, tanpa kompas atau instrumen orientasi lainnya, atau penunjuk waktu, akan memungkinkan untuk memandu kapal di sepanjang jalur terpendek atau ortodromik, untuk langsung membaca garis lintang dan bujur, jam, jarak dari titik mana pun, dan kecepatan serta arah gerakan yang sebenarnya.[82]
Ternyata, perkiraan Tesla hari ini sebagian terbukti dengan sistem navigasi radio, dan sepenuhnya dengan sistem komputer modern berbasis Sistem Pemosisi Global.
^Hoffman, Susanne M. (2016). "How time served to measure the geographical position since Hellenism". Dalam Arias, Elisa Felicitas; Combrinck, Ludwig; Gabor, Pavel; Hohenkerk, Catherine; Seidelmann, P.Kenneth. The Science of Time. Astrophysics and Space Science Proceedings. 50. Springer International. hlm. 25–36. doi:10.1007/978-3-319-59909-0_4. ISBN978-3-319-59908-3.
^Shcheglov, Dmitry A. (2016). "The Error in Longitude in Ptolemy's Geography Revisited". The Cartographic Journal. 53 (1): 3–14. doi:10.1179/1743277414Y.0000000098.Parameter |s2cid= yang tidak diketahui akan diabaikan (bantuan)
^Russo, Lucio (2013). "Ptolemy's longitudes and Eratosthenes' measurement of the earth's circumference". Mathematics and Mechanics of Complex Systems. 1 (1): 67–79. doi:10.2140/memocs.2013.1.67.
^Ragep, F.Jamil (2010). "Islamic reactions to Ptolemy's imprecisions". Dalam Jones, A. Ptolemy in Perspective. Archimedes. 23. Dordrecht: Springer. doi:10.1007/978-90-481-2788-7. ISBN978-90-481-2788-7.
^Tibbetts, Gerald R. (1992). "The Beginnings of a Cartographic Tradition"(PDF). Dalam Harley, J.B.; Woodward, David. The History of Cartography Vol. 2 Cartography in the Traditional Islamic and South Asian Societies. University of Chicago Press.
^Said, S.S.; Stevenson, F.R. (1997). "Solar and Lunar Eclipse Measurements by Medieval Muslim Astronomers, II: Observations". Journal for the History of Astronomy. 28 (1): 29–48. Bibcode:1997JHA....28...29S. doi:10.1177/002182869702800103.Parameter |s2cid= yang tidak diketahui akan diabaikan (bantuan)
^Steele, John Michael (1998). Observations and predictions of eclipse times by astronomers in the pre-telescopic period (Tesis PhD). University of Durham (United Kingdom).
^ abMercier, Raymond P. (1992). "Geodesy"(PDF). Dalam Harley, J.B.; Woodward, David. The History of Cartography Vol. 2 Cartography in the Traditional Islamic and South Asian Societies. University of Chicago Press.
^Lilley, Keith D. (2011). "Geography's medieval history: A neglected enterprise?". Dialogues in Human Geography. 1 (2): 147–162. doi:10.1177/2043820611404459.Parameter |s2cid= yang tidak diketahui akan diabaikan (bantuan)
^Grimbergen, Kees (2004). Fletcher, Karen, ed. Huygens and the advancement of time measurements. Titan - From Discovery to Encounter. Titan - from Discovery to Encounter. 1278. ESTEC, Noordwijk, Netherlands: ESA Publications Division. hlm. 91–102. Bibcode:2004ESASP1278...91G. ISBN92-9092-997-9.
^Blumenthal, Aaron S.; Nosonovsky, Michael (2020). "Friction and Dynamics of Verge and Foliot: How the Invention of the Pendulum Made Clocks Much More Accurate". Applied Mechanics. 1 (2): 111–122. doi:10.3390/applmech1020008.
^Howard, Nicole (2008). "Marketing Longitude: Clocks, Kings, Courtiers, and Christiaan Huygens". Book History. 11: 59–88. doi:10.1353/bh.0.0011.Parameter |s2cid= yang tidak diketahui akan diabaikan (bantuan)
^Olmsted, J.W. (1960). "The Voyage of Jean Richer to Acadia in 1670: A Study in the Relations of Science and Navigation under Colbert". Proceedings of the American Philosophical Society. 104 (6): 612–634. JSTOR985537.
^Halley, Edmund (1682). "An account of some very considerable observations made at Ballasore in India, serving to find the longitude of that place, and rectifying very great errours in some famous modern geographers". Philosophical Collections of the Royal Society of London. 5 (1): 124–126. doi:10.1098/rscl.1682.0012.
^Pogo, A (1935). "Gemma Frisius, His Method of Determining Differences of Longitude by Transporting Timepieces (1530), and His Treatise on Triangulation (1533)". Isis. 22 (2): 469–506. doi:10.1086/346920.Parameter |s2cid= yang tidak diketahui akan diabaikan (bantuan)
^ abMeskens, Ad (1992). "Michiel Coignet's Nautical Instruction". The Mariner's Mirror. 78 (3): 257–276. doi:10.1080/00253359.1992.10656406.
^Schott, Charles A. (1897). "The telegraphic longitude net of the United States and its connection with that of Europe, as developed by the Coast and Geodetic Survey between 1866 and 1896". The Astronomical Journal. 18: 25–28. Bibcode:1897AJ.....18...25S. doi:10.1086/102749.
^Kershaw, Michael (2014). "'A thorn in the side of European geodesy': measuring Paris–Greenwich longitude by electric telegraph". The British Journal for the History of Science. 47 (4): 637–660. doi:10.1017/S0007087413000988. ISSN0007-0874. JSTOR43820533. PMID25546999.
^Cited in: Baracchi, P. (1914). Hall, T.S., ed. Australian Longitudes. Fourteenth Meeting of the Australian Association for the Advancement of Science, Melbourne, 1913. hlm. 48–58.See page 56
^Cowie, George D.; Eckhardt, Engelhardt August (1924). Wireless longitude. Washington: US Government Printing Office. hlm. 1.
^Lombardi, Michael A., "Radio Controlled Clocks"(PDF). Diarsipkan dari versi asli(PDF) tanggal 2012-02-07. Diakses tanggal 2007-10-30.Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)(983 KB), Proceedings of the 2003 National Conference of Standards Laboratories International, August 17, 2003
^Boulnois, P.K.; Aston, C.J. (1924). "Field-Longitudes by Wireless". The Geographical Journal. 63 (4): 318–331. doi:10.2307/1781410. JSTOR1781410.
^Pierce, J.A. (1946). "An introduction to Loran". Proceedings of the IRE. 34 (5): 216–234. doi:10.1109/JRPROC.1946.234564.Parameter |s2cid= yang tidak diketahui akan diabaikan (bantuan)
^Tesla, Nicolas (1908). "The Future Of The Wireless Art". Dalam Massie, Walter W.; Underhill, Charles R. Wireless Telegraphy & Telephony. Van Norstrand. hlm. 67–71.
Pour les articles homonymes, voir Papet. Papet vaudois Le papet vaudois, avec sa saucisse aux choux. Lieu d’origine Vaud Place dans le service Plat principal Température de service Chaud Ingrédients Pommes de terre, poireaux Accompagnement Saucisse aux choux modifier Le papet vaudois, ou papet aux porreaux (de papette, qui désignait une bouillie[1]), est un plat traditionnel du canton de Vaud en Suisse. Recette Le papet vaudois se prépare avec des pommes de terre, des poireaux et de …
Raden TumenggungBawadiman Kartohadiprodjo Bupati Pasuruan ke-17Masa jabatan24 Maret 1932 – 18 Oktober 1933Penguasa monarkiWilhelminaGubernur JenderalBonifacius Cornelis de Jonge PendahuluR.M.T. Pandji Darto SoegondhoPenggantiR.A.A. Harsono (pelaksana tugas)R.T. Hoepoedio Siswodiprodjo Informasi pribadiLahirKartohadiprodjo(1886-12-25)25 Desember 1886Rembang, Hindia BelandaMeninggal18 Oktober 1933(1933-10-18) (umur 46)Surabaya, Jawa Timur, Hindia BelandaSuami/istriUmi UntariAna…
Berikut daftar raja-raja Finlandia Raja-raja Bjelbo 1250-1275: Valdemar dari Swedia (Valdemar Birgerinpoika) regent: Birger Jarl 1275-1290: Magnus III dari Swedia (Maunu Ladonlukko) 1290-1318: Birger dari Swedia (Birger Maununpoika) 1319-1364: Magnus IV dari Swedia (Maunu IV) berturut-turut: Eric XII dari Swedia dan Haakon I of Sweden, anak-anak Magnus IV 1363-1395: Albert dari Mecklenburg (Albrekt Mecklenburgilainen) 1385-87: Olav IV dari Norwegia (Olavi Haakoninpoika) Pemimpin Persatuan Kalmar…
Cet article est une ébauche concernant un coureur cycliste italien. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Pour plus d’informations, voyez le projet cyclisme. Giacomo BazzanInformationsNaissance 13 janvier 1950VescovanaDécès 24 décembre 2019 (à 69 ans)LoreoNationalité italienneÉquipes amateurs 1971SC Padovani1972Jolly Ceramica PadovaÉquipes professionnelles 1973-1975Jolly Ceramica1976FerrautoPrincipales victoires Champion du monde de poursuite …
河南省Hénán Shěng Singkatan: 豫 (pinyin: Yù) Asal nama 河 hé - Sungai Kuning 南 nán - selatan selatan Sungai Kuning Tipe administrasi Provinsi Ibu kota Zhengzhou Kota terbesar Zhengzhou Sekretaris PKT Wang Guosheng Gubernur Chen Run'er [1] Wilayah 167,000 km² (ke-17) Populasi (Tahun) - Kepadatan 96,670,000 (ke-2) 579/km² (ke-6) PDB (2003) - per kapita CNY 704.9 miliar (ke-6) CNY 7290 (ke-19) Suku-suku utama (2000) Suku Han - 98.8%Suku Hui - 1% Jumlah perfektur 17…
Coppa dell'Unione Sovietica 1979Kubok SSSR 1979 Competizione Kubok SSSR Sport Calcio Edizione 38ª Organizzatore FFSSSR Date dal 17 febbraio 1979al 9 maggio 1979 Luogo Unione Sovietica Partecipanti 48 Formula Torneo a eliminazione diretta Risultati Vincitore Dinamo Tbilisi(2º titolo) Secondo Dinamo Mosca Semi-finalisti CSKA MoscaKarpaty Statistiche Incontri disputati 127 Gol segnati 263 (2,07 per incontro) Cronologia della competizione 1978 1980 Manuale La Kubok SSSR 1979 fu …
Ираклеониты — ученики гностика Ираклеона (II век). Упоминаются как особая секта Епифанием и Августином; при крещении и миропомазании они соблюдали обряд помазания елеем и при этом произносили воззвания на арамейском языке, которые должны были освободить душу от власти …
Australian politician Andrew SouthcottMember of the Australian Parliamentfor BoothbyIn office2 March 1996 – 9 May 2016Preceded bySteele HallSucceeded byNicolle Flint Personal detailsBorn (1967-10-15) 15 October 1967 (age 56)Panorama, South AustraliaPolitical partyLiberal Party of AustraliaSpouseKate Southcott (née Simpson)Children2Alma materFlinders UniversityUniversity of AdelaideOccupationMedical practitionerWebsiteAndrewSouthcott.com.auMilitary serviceBranch/service Royal Aus…
Aviation Industry Corporation of ChinaKantor pusat AVIC di BeijingNama asli中国航空工业集团公司JenisBadan usaha milik negaraIndustriDirgantara, pertahanan, dan elektronikaDidirikan1 April 1951KantorpusatDistrik Chaoyang, Beijing, TiongkokWilayah operasiSeluruh duniaTokohkunciTan Ruisong (CEO dan Ketua)ProdukPesawat sipil dan militerPesawat nirawakBagian-bagian mobilTrukElektronikaRobotKapalPendapatan US$ 66,96 miliar (2021)Laba operasi CN¥ 370,6 miliar (2016)Laba bersih US$ 915,7 juta…
Museum in Monterey, California This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Museum of Monterey – news · newspapers · books · scholar · JSTOR (November 2017) (Learn how and when to remove this message) Museum of MontereyMonterey History and Art at Stanton CenterEstablished1971Location5 Custom House PlazaMonte…
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Nickelodeon Slovenian TV channel – news · newspapers · books · scholar · JSTOR (September 2018) (Learn how and when to remove this message) Television channel NickelodeonCountrySloveniaProgrammingLanguage(s)SlovenianPicture formatHDTV 1080i(downscaled to 576i…
55°38′47″N 12°35′57″E / 55.64639°N 12.59917°E / 55.64639; 12.59917 نادي فريماد أماغر تأسس عام 1910 البلد الدنمارك الدوري دوري الدرجة الأولى الدانماركي الموقع الرسمي الموقع الرسمي تعديل مصدري - تعديل نادي فريماد أماغر (بالفرنسية: Fremad Amager) نادي كرة قدم دنماركي يلعب في دو…
German-language author (1905 – 1994) Elias CanettiBorn(1905-07-25)25 July 1905Ruse, BulgariaDied14 August 1994(1994-08-14) (aged 89)Zürich, SwitzerlandOccupationNovelistLanguageGermanNationalityBulgarianBritishAlma materUniversity of Vienna (PhD, 1929)Notable awardsNobel Prize in Literature 1981 Spouse Veza Taubner-Calderon (m. 1934; died 1963) Hera Buschor (m. 1971) Elias Canetti (Bulgarian: Елиа…
هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (يونيو 2023) يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة م…
Instrumental blues standard first recorded by Freddie King For other uses, see Hideaway (disambiguation). Hide AwaySingle by Freddie KingB-sideI Love the Woman (initially A-side)Released1960 (1960)–1961RecordedAugust 26, 1960StudioKing, Cincinnati, OhioGenreBluesLength2:36LabelFederalSongwriter(s)Freddie King, Sonny ThompsonProducer(s)Sonny ThompsonFreddie King singles chronology You've Got to Love Her with a Feeling (1960) Hide Away (1960) Lonesome Whistle Blues (1961) Hide Away or Hidea…
Broad genre of popular music For the original 1950s style of rock music, see Rock and roll. For other uses, see Rock music (disambiguation). RockStylistic originsRock and rollrockabillyblueselectric bluesfolkcountryrhythm and bluessouljazzCultural origins1940s–1960s, US, UKTypical instrumentsGuitarbassdrumskeyboardspianoDerivative formsNew wavepost-progressiveprogressive popSubgenres Acid rock alternative rock arena rock art rock beat music Christian rock death rock experimental rock garage ro…
Volcanic field in Peru Cinder cones surrounded by lava flows The Andagua volcanic field (also known as Andahua) is a volcanic field in southern Peru which includes a number of cinder cones, lava domes and lava flows which have filled the Andagua Valley (which is also known as Valley of the Volcanoes for this reason). The volcanic field is part of a larger volcanic province that clusters around the Colca River and is mostly of Pleistocene age, although the Andagua sector also features volcanic co…