Eins
Die Eins (1) ist die natürliche Zahl zwischen null und zwei. Sie ist ungerade, eine Quadrat- und eine Kubikzahl. EtymologieDas germanische Zahlwort mittelhochdeutsch, althochdeutsch ein geht mit gleichbedeutenden anderen Wörtern indogermanischer Sprachen auf indogermanisch oi-no-s zurück.[1] Mathematische EigenschaftenDie Zahl 1 ist keine Primzahl, aber Teiler jeder natürlichen Zahl. Sie wird oft als die kleinste natürliche Zahl genommen (manche Autoren zählen jedoch die natürlichen Zahlen von null an). Ihre Primfaktorzerlegung ist das leere Produkt mit 0 Faktoren, das definitionsgemäß den Wert 1 hat. Die 1 wird häufig als eine der fünf wichtigsten Konstanten der Analysis bezeichnet (neben 0, π, e und i). Die eulersche Identität stellt einen einfachen Zusammenhang zwischen diesen Konstanten her. Die 1 wird auch in anderen Bedeutungen in der Mathematik verwendet, wie als neutrales Element bei der Multiplikation in einem Ring, genannt Einselement. In diesen Systemen können andere Rechenregeln gelten, sodass 1+1 verschiedene Bedeutungen hat und verschiedene Resultate ergeben kann. Mit 1 werden in der linearen Algebra auch Einsvektoren und Einsmatrizen, deren Elemente alle gleich dem Einselement sind, und die identische Abbildung bezeichnet. Die Zahl Eins ist eine Størmer-Zahl. Die Zahl Eins ist innerhalb der Punktrechnung „neutrales Element“: Dividiert man eine Zahl durch 1 (jede Zahl ist durch 1 teilbar), oder multipliziert oder potenziert man sie mit 1, so bleibt der Wert der Zahl unverändert. Wird eine Zahl mit 0 potenziert, die ungleich 0 ist, so ist das Ergebnis per Definition 1. Die Zahl 0 potenziert mit sich selbst bleibt entweder undefiniert oder wird, wenn zweckmäßiger, ebenfalls als 1 definiert. Bedeutung in der InformatikIn der Informatik ist die Eins sehr wichtig, da sie zusammen mit der Null das Dualsystem (Binärsystem) bildet. Sie steht in der Maschinensprache für „an“ (on) und ist in Programmiersprachen als Datentyp boolesche Variable wiederzufinden (1 = wahr = true, 0 = falsch = false). In der Datenmodellierung (speziell im Entity-Relationship-Modell), in der Beziehungen und Häufigkeiten von Entitäten zueinander geklärt und beschrieben werden, spielt die Zu-1-Beziehung eine wichtige Rolle, da sie die Eindeutigkeit einer Zuordnung festlegt. Beispielsweise steht die Entität „Kfz“ zur Entität „Besitzer“ in einer N-zu-1-Beziehung: Ein Besitzer kann mehrere Kfz haben, aber jedes Kfz muss genau einen Besitzer haben. SchreibweisenDas Symbol 1Das Symbol 1 wird als Ziffer des Stellenwertsystems verwendet. Steht die Ziffer 1 allein, so bedeutet sie nach üblicher Interpretation die „Zahl Eins“. Sie ist die größte Ziffer im Dualsystem. In Deutschland wird die Ziffer 1 gemäß der Zahlenschreibweise der lateinischen Ausgangsschrift handschriftlich in zwei Zügen gezeichnet: ein kleinerer Schrägstrich von links unten nach rechts oben und davon ausgehend ohne abzusetzen ein längerer Abstrich. Diese Schreibweise deckt sich mit der Österreichischen Schulschrift (beide Versionen von 1969 und 1995) und der Schweizer Schnürlischrift. Im englischsprachigen Kulturkreis und in davon beeinflussten Gebieten wird eine 1 als senkrechter Strich gezeichnet.[2] Die kontinentaleuropäische Schreibweise kann darum dort als 7 fehlinterpretiert werden.[3] Einige Personen in der anglophonen Welt schreiben eine 1 mit Aufstrich und einem Unterstrich.[2] Beim Schreiben von römischen Zahlen und Binärzahlen wird die 1 auch in Deutschland, Österreich und in der Schweiz als Strich gezeichnet. Periodischer DezimalbruchDie Zahl Eins besitzt neben der üblichen Schreibung als 1 eine periodische Dezimalbruchdarstellung als . Diese Aussage lässt sich auf verschiedene Arten beweisen: Zurückführung auf einen bekannten unendlichen DezimalbruchDieser Beweis ist weit verbreitet – es ist aber zu bedenken:
Anordnung der reellen ZahlenDie Gleichheit ist eine Konsequenz aus der Tatsache, dass zwei reelle Zahlen x und y nur dann verschieden sind, wenn es eine reelle Zahl z gibt, die zwischen ihnen liegt, für die also x < z < y oder y < z < x gilt. Die Existenz einer solchen Zahl z ist in diesem Fall nach Definition der Dezimalbruchentwicklung nicht möglich. Bei dieser Argumentation wird verwendet, dass jede reelle Zahl eine Dezimalbruchentwicklung besitzt. Eine Tatsache, die es natürlich vorher schon zu beweisen wäre. Grenzwert einer Zahlenfolgeist der Grenzwert der Zahlenfolge Das allgemeine Glied dieser Folge ist . Die Differenz zwischen und ist . Für jedes noch so kleine findet man ein n mit für alle . Also gilt nach Definition des Grenzwerts . Geometrische ReiheFür die periodische Dezimalbruchdarstellung gilt
Dies ist eine unendliche geometrische Reihe der Form . Solche Reihen sind für konvergent und haben den Wert . Mit und ergibt sich der Summenwert als
Andere StellenwertsystemeIn anderen Stellenwertsystemen tritt an die Stelle der Ziffer 9 die höchste Ziffer des jeweiligen Systems. Im Binärsystem ist also 1 gleich , im Hexadezimalsystem gleich 0,FFF…, entsprechend in anderen Systemen. Andere ZahlschriftenDie römische Zahl für eins ist Sonstige Bedeutungen
שְׁמַעיִשְׂרָאֵל יְהוָה אֱלֹהֵינוּ יְהוָה אֶחָד schəma jisrael adonai elohenu adonai echad Sprachliches
Siehe auchWeblinksCommons: 1 (number) – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: eins – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Einzelnachweise
Information related to Eins |