Share to: share facebook share twitter share wa share telegram print page

Absolute geometry

Absolute geometry is a geometry based on an axiom system for Euclidean geometry without the parallel postulate or any of its alternatives. Traditionally, this has meant using only the first four of Euclid's postulates.[1] The term was introduced by János Bolyai in 1832.[2] It is sometimes referred to as neutral geometry,[3] as it is neutral with respect to the parallel postulate. The first four of Euclid's postulates are now considered insufficient as a basis of Euclidean geometry, so other systems (such as Hilbert's axioms without the parallel axiom) are used instead.[4]

Properties

In Euclid's Elements, the first 28 Propositions and Proposition 31 avoid using the parallel postulate, and therefore are valid in absolute geometry. One can also prove in absolute geometry the exterior angle theorem (an exterior angle of a triangle is larger than either of the remote angles), as well as the Saccheri–Legendre theorem, which states that the sum of the measures of the angles in a triangle has at most 180°.[5]

Proposition 31 is the construction of a parallel line to a given line through a point not on the given line.[6] As the proof only requires the use of Proposition 27 (the Alternate Interior Angle Theorem), it is a valid construction in absolute geometry. More precisely, given any line l and any point P not on l, there is at least one line through P which is parallel to l. This can be proved using a familiar construction: given a line l and a point P not on l, drop the perpendicular m from P to l, then erect a perpendicular n to m through P. By the alternate interior angle theorem, l is parallel to n. (The alternate interior angle theorem states that if lines a and b are cut by a transversal t such that there is a pair of congruent alternate interior angles, then a and b are parallel.) The foregoing construction, and the alternate interior angle theorem, do not depend on the parallel postulate and are therefore valid in absolute geometry.[7]

In absolute geometry, it is also provable that two lines perpendicular to the same line cannot intersect[8] (which makes the two lines parallel by definition of parallel lines), proving that the summit angles of a Saccheri quadrilateral cannot be obtuse, and that spherical geometry is not an absolute geometry.

Relation to other geometries

The theorems of absolute geometry hold in hyperbolic geometry, which is a non-Euclidean geometry, as well as in Euclidean geometry.[9]

Absolute geometry is inconsistent with elliptic geometry: in that theory, there are no parallel lines at all, but it is a theorem of absolute geometry that parallel lines do exist. However, it is possible to modify the axiom system so that absolute geometry, as defined by the modified system, will include spherical and elliptic geometries, that have no parallel lines.[10]

Absolute geometry is an extension of ordered geometry, and thus, all theorems in ordered geometry hold in absolute geometry. The converse is not true. Absolute geometry assumes the first four of Euclid's Axioms (or their equivalents), to be contrasted with affine geometry, which does not assume Euclid's third and fourth axioms. (3: "To describe a circle with any centre and distance radius.", 4: "That all right angles are equal to one another." ) Ordered geometry is a common foundation of both absolute and affine geometry.[11]

The geometry of special relativity has been developed starting with nine axioms and eleven propositions of absolute geometry.[12][13] The authors Edwin B. Wilson and Gilbert N. Lewis then proceed beyond absolute geometry when they introduce hyperbolic rotation as the transformation relating two frames of reference.

Hilbert planes

A plane that satisfies Hilbert's Incidence, Betweenness and Congruence axioms is called a Hilbert plane.[14] Hilbert planes are models of absolute geometry.[15]

Incompleteness

Absolute geometry is an incomplete axiomatic system, in the sense that one can add extra independent axioms without making the axiom system inconsistent. One can extend absolute geometry by adding various axioms about parallel lines and get mutually incompatible but internally consistent axiom systems, giving rise to Euclidean or hyperbolic geometry. Thus every theorem of absolute geometry is a theorem of hyperbolic geometry and Euclidean geometry. However the converse is not true.

See also

Notes

  1. ^ Faber 1983, pg. 131
  2. ^ In "Appendix exhibiting the absolute science of space: independent of the truth or falsity of Euclid's Axiom XI (by no means previously decided)" (Faber 1983, pg. 161)
  3. ^ Greenberg cites W. Prenowitz and M. Jordan (Greenberg, p. xvi) for having used the term neutral geometry to refer to that part of Euclidean geometry that does not depend on Euclid's parallel postulate. He says that the word absolute in absolute geometry misleadingly implies that all other geometries depend on it.
  4. ^ Faber 1983, pg. 131
  5. ^ One sees the incompatibility of absolute geometry with elliptic geometry, because in the latter theory all triangles have angle sums greater than 180°.
  6. ^ Faber 1983, p. 296
  7. ^ Greenberg 2007, p. 163
  8. ^ Fine et al. 2022, Corollary 1.8, p. 11.
  9. ^ Indeed, absolute geometry is in fact the intersection of hyperbolic geometry and Euclidean geometry when these are regarded as sets of propositions.
  10. ^ Ewald, G. (1971), Geometry: An Introduction, Wadsworth
  11. ^ Coxeter 1969, pp. 175–6
  12. ^ Edwin B. Wilson & Gilbert N. Lewis (1912) "The Space-time Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electromagnetics" Proceedings of the American Academy of Arts and Sciences 48:387–507
  13. ^ [1], a digest of the axioms used, and theorems proved, by Wilson and Lewis. Archived by Wayback Machine
  14. ^ Hartshorne 2005, p.97
  15. ^ Greenberg 2010, p.200

References

  • Coxeter, H. S. M. (1969), Introduction to Geometry (2nd ed.), New York: John Wiley & Sons
  • Faber, Richard L. (1983), Foundations of Euclidean and Non-Euclidean Geometry, New York: Marcel Dekker, ISBN 0-8247-1748-1
  • Fine, Benjamin; Moldenhauer, Anja; Rosenberger, Gerhard; Schürenberg, Annika; Wienke, Leonard (2022), Geometry and Discrete Mathematics: A Selection of Highlights, De Gruyter Textbooks (2nd ed.), Walter de Gruyter, ISBN 9783110740783
  • Greenberg, Marvin Jay (2007), Euclidean and Non-Euclidean Geometries: Development and History (4th ed.), New York: W. H. Freeman, ISBN 0-7167-9948-0
  • Greenberg, Marvin Jay (2010), "Old and New Results in the Foundations of Elementary Plane Euclidean and Non-Euclidean Geometries" (PDF), Mathematical Association of America Monthly, 117: 198–219
  • Hartshorne, Robin (2005), Geometry: Euclid and Beyond, New York: Springer-Verlag, ISBN 0-387-98650-2
  • Pambuccain, Victor Axiomatizations of hyperbolic and absolute geometries, in: Non-Euclidean geometries (A. Prékopa and E. Molnár, eds.). János Bolyai memorial volume. Papers from the international conference on hyperbolic geometry, Budapest, Hungary, July 6–12, 2002. New York, NY: Springer, 119–153, 2006.
Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya