Share to: share facebook share twitter share wa share telegram print page

Discrete space

In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a discontinuous sequence, meaning they are isolated from each other in a certain sense. The discrete topology is the finest topology that can be given on a set. Every subset is open in the discrete topology so that in particular, every singleton subset is an open set in the discrete topology.

Definitions

Given a set :

  • the discrete topology on is defined by letting every subset of be open (and hence also closed), and is a discrete topological space if it is equipped with its discrete topology;
  • the discrete uniformity on is defined by letting every superset of the diagonal in be an entourage, and is a discrete uniform space if it is equipped with its discrete uniformity.
  • the discrete metric on is defined by
    for any In this case is called a discrete metric space or a space of isolated points.
  • a discrete subspace of some given topological space refers to a topological subspace of (a subset of together with the subspace topology that induces on it) whose topology is equal to the discrete topology. For example, if has its usual Euclidean topology then (endowed with the subspace topology) is a discrete subspace of but is not.
  • a set is discrete in a metric space for if for every there exists some (depending on ) such that for all ; such a set consists of isolated points. A set is uniformly discrete in the metric space for if there exists such that for any two distinct

A metric space is said to be uniformly discrete if there exists a packing radius such that, for any one has either or [1] The topology underlying a metric space can be discrete, without the metric being uniformly discrete: for example the usual metric on the set

Proof that a discrete space is not necessarily uniformly discrete

Let consider this set using the usual metric on the real numbers. Then, is a discrete space, since for each point we can surround it with the open interval where The intersection is therefore trivially the singleton Since the intersection of an open set of the real numbers and is open for the induced topology, it follows that is open so singletons are open and is a discrete space.

However, cannot be uniformly discrete. To see why, suppose there exists an such that whenever It suffices to show that there are at least two points and in that are closer to each other than Since the distance between adjacent points and is we need to find an that satisfies this inequality:

Since there is always an bigger than any given real number, it follows that there will always be at least two points in that are closer to each other than any positive therefore is not uniformly discrete.

Properties

The underlying uniformity on a discrete metric space is the discrete uniformity, and the underlying topology on a discrete uniform space is the discrete topology. Thus, the different notions of discrete space are compatible with one another. On the other hand, the underlying topology of a non-discrete uniform or metric space can be discrete; an example is the metric space (with metric inherited from the real line and given by ). This is not the discrete metric; also, this space is not complete and hence not discrete as a uniform space. Nevertheless, it is discrete as a topological space. We say that is topologically discrete but not uniformly discrete or metrically discrete.

Additionally:

  • The topological dimension of a discrete space is equal to 0.
  • A topological space is discrete if and only if its singletons are open, which is the case if and only if it doesn't contain any accumulation points.
  • The singletons form a basis for the discrete topology.
  • A uniform space is discrete if and only if the diagonal is an entourage.
  • Every discrete topological space satisfies each of the separation axioms; in particular, every discrete space is Hausdorff, that is, separated.
  • A discrete space is compact if and only if it is finite.
  • Every discrete uniform or metric space is complete.
  • Combining the above two facts, every discrete uniform or metric space is totally bounded if and only if it is finite.
  • Every discrete metric space is bounded.
  • Every discrete space is first-countable; it is moreover second-countable if and only if it is countable.
  • Every discrete space is totally disconnected.
  • Every non-empty discrete space is second category.
  • Any two discrete spaces with the same cardinality are homeomorphic.
  • Every discrete space is metrizable (by the discrete metric).
  • A finite space is metrizable only if it is discrete.
  • If is a topological space and is a set carrying the discrete topology, then is evenly covered by (the projection map is the desired covering)
  • The subspace topology on the integers as a subspace of the real line is the discrete topology.
  • A discrete space is separable if and only if it is countable.
  • Any topological subspace of (with its usual Euclidean topology) that is discrete is necessarily countable.[2]

Any function from a discrete topological space to another topological space is continuous, and any function from a discrete uniform space to another uniform space is uniformly continuous. That is, the discrete space is free on the set in the category of topological spaces and continuous maps or in the category of uniform spaces and uniformly continuous maps. These facts are examples of a much broader phenomenon, in which discrete structures are usually free on sets.

With metric spaces, things are more complicated, because there are several categories of metric spaces, depending on what is chosen for the morphisms. Certainly the discrete metric space is free when the morphisms are all uniformly continuous maps or all continuous maps, but this says nothing interesting about the metric structure, only the uniform or topological structure. Categories more relevant to the metric structure can be found by limiting the morphisms to Lipschitz continuous maps or to short maps; however, these categories don't have free objects (on more than one element). However, the discrete metric space is free in the category of bounded metric spaces and Lipschitz continuous maps, and it is free in the category of metric spaces bounded by 1 and short maps. That is, any function from a discrete metric space to another bounded metric space is Lipschitz continuous, and any function from a discrete metric space to another metric space bounded by 1 is short.

Going the other direction, a function from a topological space to a discrete space is continuous if and only if it is locally constant in the sense that every point in has a neighborhood on which is constant.

Every ultrafilter on a non-empty set can be associated with a topology on with the property that every non-empty proper subset of is either an open subset or else a closed subset, but never both. Said differently, every subset is open or closed but (in contrast to the discrete topology) the only subsets that are both open and closed (i.e. clopen) are and . In comparison, every subset of is open and closed in the discrete topology.

Examples and uses

A discrete structure is often used as the "default structure" on a set that doesn't carry any other natural topology, uniformity, or metric; discrete structures can often be used as "extreme" examples to test particular suppositions. For example, any group can be considered as a topological group by giving it the discrete topology, implying that theorems about topological groups apply to all groups. Indeed, analysts may refer to the ordinary, non-topological groups studied by algebraists as "discrete groups". In some cases, this can be usefully applied, for example in combination with Pontryagin duality. A 0-dimensional manifold (or differentiable or analytic manifold) is nothing but a discrete and countable topological space (an uncountable discrete space is not second-countable). We can therefore view any discrete countable group as a 0-dimensional Lie group.

A product of countably infinite copies of the discrete space of natural numbers is homeomorphic to the space of irrational numbers, with the homeomorphism given by the continued fraction expansion. A product of countably infinite copies of the discrete space is homeomorphic to the Cantor set; and in fact uniformly homeomorphic to the Cantor set if we use the product uniformity on the product. Such a homeomorphism is given by using ternary notation of numbers. (See Cantor space.) Every fiber of a locally injective function is necessarily a discrete subspace of its domain.

In the foundations of mathematics, the study of compactness properties of products of is central to the topological approach to the ultrafilter lemma (equivalently, the Boolean prime ideal theorem), which is a weak form of the axiom of choice.

Indiscrete spaces

In some ways, the opposite of the discrete topology is the trivial topology (also called the indiscrete topology), which has the fewest possible open sets (just the empty set and the space itself). Where the discrete topology is initial or free, the indiscrete topology is final or cofree: every function from a topological space to an indiscrete space is continuous, etc.

See also

References

  1. ^ Pleasants, Peter A.B. (2000). "Designer quasicrystals: Cut-and-project sets with pre-assigned properties". In Baake, Michael (ed.). Directions in mathematical quasicrystals. CRM Monograph Series. Vol. 13. Providence, RI: American Mathematical Society. pp. 95–141. ISBN 0-8218-2629-8. Zbl 0982.52018.
  2. ^ Wilansky 2008, p. 35.
Read more information:

Lege Melolonthini Melolontha melolontha (en) TaksonomiKerajaanAnimaliaFilumArthropodaKelasInsectaOrdoColeopteraFamiliScarabaeidaeTribusMelolonthini Samouelle, 1819 lbs Melolonthini atau kumbang lege adalah suku kumbang skarab dalam keluarga Scarabaeidae .[1] Ada lebih dari 250 genera di Melolonthini, yang terdapat di seluruh dunia; ada lebih dari 300 spesies di Amerika Utara saja, dan lebih dari 3000 di seluruh dunia. [2] [3] Genera terpilih Amblonoxia Reitter, 1902 Amphi…

Prof. Dr. H.Raden Asep KadarohmanM.Si. Rektor Universitas Pendidikan Indonesia ke-4Masa jabatan24 Mei 2017 – 16 Juni 2020 PendahuluProf. H. Furqon, M.A., Ph.D.PenggantiProf. Dr. M. Solehuddin, M.Pd., M.A. Informasi pribadiLahirR. Asep Kadarohman9 Mei 1963 (umur 60)Bandung, IndonesiaKebangsaanIndonesiaAlma materUniversitas Pendidikan IndonesiaUniversitas Gadjah MadaSunting kotak info • L • B Prof. Dr. H. Raden Asep Kadarohman, M.Si., (lahir 9 Mei 1963) adalah Rek…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Royal Feast (Hanzi: 尚食) adalah sebuah seri drama Tiongkok tahun 2022 yang disutradarai oleh Wang Wei dan ditulis oleh Zhou Mo. Terdiri dari 40 episode, seri tersebut menampilkan Xu Kai, Wu Jin Yan, dan Wang Yi Zhe.[1][2] Sinopsis …

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен · …

العلاقات الغرينادية المنغولية غرينادا منغوليا   غرينادا   منغوليا تعديل مصدري - تعديل   العلاقات الغرينادية المنغولية هي العلاقات الثنائية التي تجمع بين غرينادا ومنغوليا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ال…

Buah-buahan sebagai sumber vitamin bagi tubuh. Vitamin (Inggris: vital amine, vitamincode: en is deprecated ) adalah sekelompok senyawa organik berbobot molekul rendah yang memiliki fungsi vital dalam metabolisme setiap organisme,[1] yang tidak dapat dihasilkan oleh tubuh. Nama vitamin berasal dari gabungan kata bahasa Latin vita yang artinya hidup dan amina (amine) yang mengacu pada suatu gugus fungsi yang memiliki atom nitrogen (N), karena pada awalnya vitamin dianggap demikian.[2&…

Radio station in Shreveport, Louisiana KXKS-FMShreveport, LouisianaBroadcast areaShreveport – Bossier City areaFrequency93.7 MHzBrandingKiss Country 93.7ProgrammingLanguage(s)EnglishFormatCountryAffiliationsCompass Media NetworksOwnershipOwnerTownsquare Media(Townsquare License, LLC)Sister stationsKEEL, KRUF, KTUX, KVKI-FM, KWKHHistoryFoundedJuly 14, 1966 (57 years ago) (1966-07-14) (initial CP issued)First air dateMay 17, 1968(55 years ago) (1968-05-17)Former call sign…

Pour les articles homonymes, voir Durafour. Antoine Durafour Le député Antoine Durafour au Congrès radical socialiste de Reims en 1929. Fonctions Ministre du Travail, de l'Hygiène, de l'Assistance et de la Prévoyance sociales 17 juin 1925 – 19 juillet 1926(1 an, 1 mois et 2 jours) Président Gaston Doumergue Président du Conseil Paul PainlevéAristide Briand Gouvernement Painlevé II et IIIBriand VIII, IX et X Prédécesseur Justin Godart Successeur Louis Pasquet Député …

Édouard GrindaFonctionsMinistre du Travail (en)Gouvernement Théodore Steeg13 décembre 1930 - 27 janvier 1931Conseiller général des Alpes-Maritimes1923-1931Député des Alpes-Maritimes16 novembre 1919 - 31 mai 1932BiographieNaissance 20 décembre 1866Nice (France)Décès 28 mars 1959 (à 92 ans)Nice (France)Sépulture Cimetière du ChâteauNationalité FrançaiseFormation Lycée MassénaActivité Homme politiqueAutres informationsParti politique Alliance démocratiqueVue de la sépultur…

Werry Darta Taifur300x300px BiografiKelahiran29 November 1960 (63 tahun)Kubang Rektor Universitas Andalas 21 November 2011 – 21 November 2015 ← Musliar Kasim – Tafdil Husni → Data pribadiKelompok etnikOrang Minangkabau AgamaIslam PendidikanUniversitas Malaya - doktor Universitas Flinders - Master of Arts (en) Universitas Andalas - Sarjana Ekonomi KegiatanSpesialisasiEkonomi pembangunan Pekerjaanekonom, dosen, akademisi Bekerja diUniversitas Andalas Prof. Dr…

Geronimo dengan busur tradisional Apache dan panahnya. Geronimo (juga Goyaałé 'Orang yang Menguap' atau Goyathlay), (16 Juni 1829–17 Februari 1909) adalah seorang pemimpin bangsa Amerika Asli dari suku Apache yang lama berperang melawan pengambilan tanah milik suku Apache oleh para pemukim keturunan Eropa. Ia terkenal sebagai pemimpin yang hebat dalam penyerbuan dan peperangan, ia sering memimpin banyak pria dan wanita di luar kemampuannya sendiri. Pada suatu waktu, ia akan memimpin sekitar …

History of Indian state of Bihar The Maurya Empire with capital at Patliputra spanned across the Indian subcontinent as well as over parts of modern-day Iran and modern-day Myanmar. History of South Asia Outline Palaeolithic (2,500,000–250,000 BC) Madrasian culture Soanian culture Neolithic (10,800–3300 BC) Bhirrana culture (7570–6200 BC) Mehrgarh culture (7000–3300 BC) Edakkal culture (5000–3000 BC) Chalcolithic (3500–1500 BC) Anarta tradition (c. 3950–1900 BC) Ahar-Banas cu…

First Lady of Illinois from 2003 to 2009 Patricia BlagojevichFirst Lady of IllinoisIn roleJanuary 13, 2003 – January 29, 2009GovernorRod BlagojevichPreceded byLura Lynn RyanSucceeded byDiana Rauner (2019) Personal detailsBornPatricia Mell (1965-04-09) April 9, 1965 (age 58)Chicago, Illinois, U.S.Political partyDemocraticSpouseRod BlagojevichChildren2 daughtersParent(s)Richard MellMarge MellRelativesDeb Mell (sister) Patricia Mell Patti Blagojevich (born April 9, 1965), née Mell,…

Baseball field in Brooklyn, New York This article is about the ballpark in Brooklyn. For the Major League ballpark in St. Louis of the same name, see Union Grounds (St. Louis). Union Grounds in 1865 Union Grounds was a baseball park located in the Williamsburg section of Brooklyn, New York. The grounds opened in 1862, its inaugural match being played on May 15.[1] It was the first baseball park enclosed entirely by a fence, thereby allowing proprietor William Cammeyer or his tenant to ch…

Alexander GontchenkovInformationsNom court Александр ГонченковNaissance 4 avril 1970 (54 ans)LvivNationalité ukrainienneDistinction Maître émérite du sport de l'URSSÉquipes amateurs URSSÉquipes professionnelles 1993Lampre-Polti1994-1995Lampre-Ceramica Panaria1996-1997Roslotto-ZG Mobili1998 Ballan1999 Ballan-Alessio2000-2001Alessiomodifier - modifier le code - modifier Wikidata Alexander Gontchenkov est un ancien coureur cycliste soviétique et ukrainien né le 4 avri…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Motor reluktansi variabel adalah motor listrik yang tidak menggunakan rotor dengan magnetisasi permanen. Stator pada motor ini berjumlah enam kutub, sedangkan pada bagian rotornya hanya empat kutub. Pada saat eksitasi, kutub rotor yang sejajar dengan kutu…

American post-apocalyptic comedy drama adventure television series DaybreakPromotional posterGenre Post-apocalyptic Black comedy Teen drama Adventure Created by Brad Peyton Aron Eli Coleite Based on'Daybreak'by Brian RalphStarring Colin Ford Alyvia Alyn Lind Sophie Simnett Austin Crute Cody Kearsley Jeanté Godlock Gregory Kasyan Krysta Rodriguez Matthew Broderick ComposerAndrew LockingtonCountry of originUnited StatesOriginal languageEnglishNo. of seasons1No. of episodes10ProductionExecutive pr…

Town in Yucatán, MexicoKomchénTownKomchénLocation of Merida in YucatánShow map of Yucatán (state)KomchénKomchén (Mexico)Show map of MexicoCoordinates: 21°06′13″N 89°39′45″W / 21.10361°N 89.66250°W / 21.10361; -89.66250Country MexicoState YucatánMunicipality MéridaPopulation (2005[1]) • Total3,778Time zoneUTC-6 (Central Standard Time) • Summer (DST)UTC-5 (Central Daylight Time)Major AirportMerida (Manuel C…

Universitas Dankook단국대학교 (檀國大學校)Moto자립·자주·구국Moto dalam bahasa InggrisSelf-relianceIndependenceNational salvationJenisUniversitas swastaDidirikan3 November 1947PresidenHo-sung ChangSarjanaKampus Jukjeon: 10,466Kampus Cheonan: 11,686MagisterKampus Jukjeon: 3,648Kampus Cheonan: 3,987LokasiKampus Jukjeon: Yongin, Gyeonggi, Korea SelatanKampus Cheonan: Cheonan,Chungnam, Korea SelatanKampusUrbanWarnaBiru  MaskotBeruang[1]Situs webdankook.ac.krBerkas:…

Nikolaus Pföderl Nazionalità  Germania Sci alpino Specialità Slalom speciale Squadra SC Lenggries Palmarès Competizione Ori Argenti Bronzi Mondiali juniores 0 0 1 Per maggiori dettagli vedi qui Statistiche aggiornate all'11 aprile 2024 Modifica dati su Wikidata · Manuale Nikolaus Pföderl (1º febbraio 1998) è uno sciatore alpino tedesco. Indice 1 Biografia 2 Palmarès 2.1 Mondiali juniores 2.2 Coppa Europa 3 Collegamenti esterni Biografia Attivo in gare FIS dal febbraio del 2015…

Kembali kehalaman sebelumnya