And is usually denoted by an infix operator: in mathematics and logic, it is denoted by a "wedge" (Unicode U+2227∧LOGICAL AND),[1] or ; in electronics, ; and in programming languages &, &&, or and. In Jan Łukasiewicz's prefix notation for logic, the operator is , for Polish koniunkcja.[4]
In mathematics, the conjunction of an arbitrary number of elements can be denoted as an iterated binary operation using a "big wedge" ⋀ (Unicode U+22C0⋀N-ARY LOGICAL AND):[5]
The conjunctive identity is true, which is to say that AND-ing an expression with true will never change the value of the expression. In keeping with the concept of vacuous truth, when conjunction is defined as an operator or function of arbitrary arity, the empty conjunction (AND-ing over an empty set of operands) is often defined as having the result true.
In systems where logical conjunction is not a primitive, it may be defined as[6]
It can be checked by the following truth table (compare the last two columns):
F
F
T
T
F
F
F
T
F
T
F
F
T
F
T
T
F
F
T
T
F
F
T
T
or
It can be checked by the following truth table (compare the last two columns):
F
F
T
T
T
F
F
F
T
T
F
T
F
F
T
F
F
T
T
F
F
T
T
F
F
F
T
T
Introduction and elimination rules
As a rule of inference, conjunction introduction is a classically valid, simple argument form. The argument form has two premises, and . Intuitively, it permits the inference of their conjunction.
,
.
Therefore, A and B.
or in logical operator notation, where \vdash expresses provability:
Therefore, Bob likes apples and Bob likes oranges.
Conjunction elimination is another classically valid, simple argument form. Intuitively, it permits the inference from any conjunction of either element of that conjunction.
A conjunction is proven false by establishing either or . In terms of the object language, this reads
This formula can be seen as a special case of
when is a false proposition.
Other proof strategies
If implies , then both as well as prove the conjunction false:
In other words, a conjunction can actually be proven false just by knowing about the relation of its conjuncts, and not necessary about their truth values.
This formula can be seen as a special case of
when is a false proposition.
Either of the above are constructively valid proofs by contradiction.
If using binary values for true (1) and false (0), then logical conjunction works exactly like normal arithmetic multiplication.
Applications in computer engineering
In high-level computer programming and digital electronics, logical conjunction is commonly represented by an infix operator, usually as a keyword such as "AND", an algebraic multiplication, or the ampersand symbol & (sometimes doubled as in &&). Many languages also provide short-circuit control structures corresponding to logical conjunction.
Logical conjunction is often used for bitwise operations, where 0 corresponds to false and 1 to true:
0 AND 0 = 0,
0 AND 1 = 0,
1 AND 0 = 0,
1 AND 1 = 1.
The operation can also be applied to two binary words viewed as bitstrings of equal length, by taking the bitwise AND of each pair of bits at corresponding positions. For example:
11000110 AND 10100011 = 10000010.
This can be used to select part of a bitstring using a bit mask. For example, 10011101 AND 00001000 = 00001000 extracts the fourth bit of an 8-bit bitstring.
The membership of an element of an intersection set in set theory is defined in terms of a logical conjunction: if and only if . Through this correspondence, set-theoretic intersection shares several properties with logical conjunction, such as associativity, commutativity and idempotence.
Natural language
As with other notions formalized in mathematical logic, the logical conjunction and is related to, but not the same as, the grammatical conjunctionand in natural languages.
English "and" has properties not captured by logical conjunction. For example, "and" sometimes implies order having the sense of "then". For example, "They got married and had a child" in common discourse means that the marriage came before the child.
The word "and" can also imply a partition of a thing into parts, as "The American flag is red, white, and blue." Here, it is not meant that the flag is at once red, white, and blue, but rather that it has a part of each color.
^Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. p. 17. ISBN978-0-203-85155-5.
^Józef Maria Bocheński (1959), A Précis of Mathematical Logic, translated by Otto Bird from the French and German editions, Dordrecht, South Holland: D. Reidel, passim.
^Weisstein, Eric W. "Conjunction". MathWorld--A Wolfram Web Resource. Retrieved 24 September 2024.