Share to: share facebook share twitter share wa share telegram print page

Injective function

In mathematics, an injective function (also known as injection, or one-to-one function[1] ) is a function f that maps distinct elements of its domain to distinct elements; that is, x1x2 implies f(x1) ≠ f(x2). (Equivalently, f(x1) = f(x2) implies x1 = x2 in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the image of at most one element of its domain.[2] The term one-to-one function must not be confused with one-to-one correspondence that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain.

A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an injective homomorphism is also called a monomorphism. However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism.[3] This is thus a theorem that they are equivalent for algebraic structures; see Homomorphism § Monomorphism for more details.

A function that is not injective is sometimes called many-to-one.[2]

Definition

An injective function, which is not also surjective.

Let be a function whose domain is a set The function is said to be injective provided that for all and in if then ; that is, implies Equivalently, if then in the contrapositive statement.

Symbolically, which is logically equivalent to the contrapositive,[4]

Examples

For visual examples, readers are directed to the gallery section.

  • For any set and any subset the inclusion map (which sends any element to itself) is injective. In particular, the identity function is always injective (and in fact bijective).
  • If the domain of a function is the empty set, then the function is the empty function, which is injective.
  • If the domain of a function has one element (that is, it is a singleton set), then the function is always injective.
  • The function defined by is injective.
  • The function defined by is not injective, because (for example) However, if is redefined so that its domain is the non-negative real numbers [0,+∞), then is injective.
  • The exponential function defined by is injective (but not surjective, as no real value maps to a negative number).
  • The natural logarithm function defined by is injective.
  • The function defined by is not injective, since, for example,

More generally, when and are both the real line then an injective function is one whose graph is never intersected by any horizontal line more than once. This principle is referred to as the horizontal line test.[2]

Injections can be undone

Functions with left inverses are always injections. That is, given if there is a function such that for every , , then is injective. In this case, is called a retraction of Conversely, is called a section of

Conversely, every injection with a non-empty domain has a left inverse . It can be defined by choosing an element in the domain of and setting to the unique element of the pre-image (if it is non-empty) or to (otherwise).[5]

The left inverse is not necessarily an inverse of because the composition in the other order, may differ from the identity on In other words, an injective function can be "reversed" by a left inverse, but is not necessarily invertible, which requires that the function is bijective.

Injections may be made invertible

In fact, to turn an injective function into a bijective (hence invertible) function, it suffices to replace its codomain by its actual image That is, let such that for all ; then is bijective. Indeed, can be factored as where is the inclusion function from into

More generally, injective partial functions are called partial bijections.

Other properties

The composition of two injective functions is injective.
  • If and are both injective then is injective.
  • If is injective, then is injective (but need not be).
  • is injective if and only if, given any functions whenever then In other words, injective functions are precisely the monomorphisms in the category Set of sets.
  • If is injective and is a subset of then Thus, can be recovered from its image
  • If is injective and and are both subsets of then
  • Every function can be decomposed as for a suitable injection and surjection This decomposition is unique up to isomorphism, and may be thought of as the inclusion function of the range of as a subset of the codomain of
  • If is an injective function, then has at least as many elements as in the sense of cardinal numbers. In particular, if, in addition, there is an injection from to then and have the same cardinal number. (This is known as the Cantor–Bernstein–Schroeder theorem.)
  • If both and are finite with the same number of elements, then is injective if and only if is surjective (in which case is bijective).
  • An injective function which is a homomorphism between two algebraic structures is an embedding.
  • Unlike surjectivity, which is a relation between the graph of a function and its codomain, injectivity is a property of the graph of the function alone; that is, whether a function is injective can be decided by only considering the graph (and not the codomain) of

Proving that functions are injective

A proof that a function is injective depends on how the function is presented and what properties the function holds. For functions that are given by some formula there is a basic idea. We use the definition of injectivity, namely that if then [6]

Here is an example:

Proof: Let Suppose So implies which implies Therefore, it follows from the definition that is injective.

There are multiple other methods of proving that a function is injective. For example, in calculus if is a differentiable function defined on some interval, then it is sufficient to show that the derivative is always positive or always negative on that interval. In linear algebra, if is a linear transformation it is sufficient to show that the kernel of contains only the zero vector. If is a function with finite domain it is sufficient to look through the list of images of each domain element and check that no image occurs twice on the list.

A graphical approach for a real-valued function of a real variable is the horizontal line test. If every horizontal line intersects the curve of in at most one point, then is injective or one-to-one.

Gallery

See also

Notes

  1. ^ Sometimes one-one function, in Indian mathematical education. "Chapter 1:Relations and functions" (PDF). Archived (PDF) from the original on Dec 26, 2023 – via NCERT.
  2. ^ a b c "Injective, Surjective and Bijective". Math is Fun. Retrieved 2019-12-07.
  3. ^ "Section 7.3 (00V5): Injective and surjective maps of presheaves". The Stacks project. Retrieved 2019-12-07.
  4. ^ Farlow, S. J. "Section 4.2 Injections, Surjections, and Bijections" (PDF). Mathematics & Statistics - University of Maine. Archived from the original (PDF) on Dec 7, 2019. Retrieved 2019-12-06.
  5. ^ Unlike the corresponding statement that every surjective function has a right inverse, this does not require the axiom of choice, as the existence of is implied by the non-emptiness of the domain. However, this statement may fail in less conventional mathematics such as constructive mathematics. In constructive mathematics, the inclusion of the two-element set in the reals cannot have a left inverse, as it would violate indecomposability, by giving a retraction of the real line to the set {0,1}.
  6. ^ Williams, Peter (Aug 21, 1996). "Proving Functions One-to-One". Department of Mathematics at CSU San Bernardino Reference Notes Page. Archived from the original on 4 June 2017.

References

External links

Read more information:

ArtavasdosἈρταύασδοςKaisar Romawi TimurBerkuasaJuni 741 – November 743PendahuluKonstantinus VPenerusKonstantinus VInformasi pribadiKelahiranTak diketahuiKematian743WangsaIsauriaNama lengkapԱրտավազդ, ArtavazdPasanganAnnaAnakNikephorosNiketas Artavasdos, dilatinisasi menjadi Artabasdos (bahasa Yunani: Ἀρταύασδος atau Ἀρτάβασδος, dari bahasa Armenia: Արտավազդ, Artavazd, Ardavazt), adalah Kaisar Romawi Timur keturunan Armenia sejak tahun 741 ata…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2023. Philippe CastelliLahir(1926-06-08)8 Juni 1926Chaville, PrancisMeninggal16 April 2006(2006-04-16) (umur 79)Paris, PrancisPekerjaanPemeranTahun aktif1960 – 1992 Philippe Castelli (8 Juni 1926 – 16 April 2006) adalah seorang peme…

Duta Besar Amerika Serikat untuk UkrainaSegel Kementerian Dalam Negeri Amerika SerikatDicalonkan olehPresiden Amerika SerikatDitunjuk olehPresidendengan nasehat Senat Berikut ini adalah daftar Duta Besar Amerika Serikat untuk Ukraina Daftar Roman Popadiuk William Green Miller Steven Pifer Carlos Pascual John E. Herbst William B. Taylor, Jr.[1] John F. Tefft[2][3] Geoffrey R. Pyatt[4][5] Marie L. Yovanovitch[6] Referensi ^ New U.S. ambassador Tefft …

Moldovan professional wrestler and former mixed martial artist Marina ShafirShafir in 2014Born (1988-04-14) April 14, 1988 (age 35)Soroca, Moldavian SSR, Soviet Union(now Moldova)NationalitySoviet (formerly)MoldovanSpouse Roderick Strong ​(m. 2018)​Children1Professional wrestling careerRing name(s)Marina ShafirThe ProblemBilled height5 ft 7 in (1.70 m)Billed weight145 lb (66 kg; 10.4 st)Billed fromMoldovaTrained byWWE Performance Ce…

Untuk orang lain dengan nama yang sama, lihat Bill O'Reilly. Bill O'ReillyO'Reilly at the World Affairs Council of Philadelphia, September 30, 2010LahirWilliam James O'Reilly, Jr.10 September 1949 (umur 74)New York City, New York, A.S.Tempat tinggalManhasset, New YorkAlmamaterMarist College (BA)Universitas Boston (MA)Universitas Harvard (MPA)PekerjaanKolumnis, pengarang, tokoh televisi, tokoh radioTahun aktif1975–sekarangGaji$20.000.000 (2010)[1]Suami/istriMaureen E. McPhilmy…

Гавайская реформистская католическая церковь Собор Святого Андрея Общие сведения Основатели Камеамеа IV Основание 1862 Дата роспуска 1893 Конфессия Протестантизм Церковь-мать Англиканская Признание автономии 1862—1893 Руководство Предстоятель Роберт Фитцпатрик Резиденция г…

University of East LondonMotoLatin: Scientia et votorum impletiocode: la is deprecated JenisNegeriDidirikan1992 – meraih status universitas 1989 – Polytechnic of East London 1970 – North East London Polytechnic 1952 – West Ham College of Technology 1892 – West Ham Technical InstituteKanselirShabir RandereeWakil KanselirJohn JoughinJumlah mahasiswa15,355 (2019/20)[1]Sarjana10,270 (2019/20)[1]Magister5,085 (2019/20)[1]LokasiLondon, Britania Raya51°30′28″N 0°…

Nargiz Birk-PetersenBirk-Petersen memandu Kontes Lagu Eurovision 2012LahirNərgiz İlqar qızı Abbaszadə07 Agustus 1976 (umur 47)Baku, RSS Azerbaijan, Uni SovietAlmamaterKhazar UniversityUniversitas Michigan (B.A.)Wayne State University (J.D.)Universitas Georgetown (LL.M.)PekerjaanPengacara, presenter, peraga busanaOrang tuaMaleyka Abbaszadeh (ibu) Nargiz Ilgar qizi Birk-Petersen (née Abbaszadeh; bahasa Azerbaijan: Nərgiz İlqar qızı Abbaszadə, [nærɟis ilɡɑr ɡəzə ɑbɑszɑ…

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Mitologi Hindu – berita · surat kabar · buku · cendekiawan · JSTOR Ilustrasi dalam kitab Purana, salah satu sumber mitologi Hindu. Bagian dari seriAgama Hindu Umat Sejarah Topik Sejarah Mitologi Kosmologi Dewa-D…

Brian Whitesell (lahir 23 April 1964) merupakan seorang insinyur dan manajer tim balap asal Amerika Serikat yang kini bekerja untuk tim Hendrick Motorsports di ajang NASCAR Seri Piala Sprint. Ia sempat menjadi manajer untuk Mark Martin dan Dale Earnhardt, Jr. Ia merupakan salah satu orang yang sukses mengantar tim Hendrick mendominasi NASCAR Seri Piala dengan gelar di musim 1992, 1995, 1996, 1997, 1998, 2001, 2006 dan 2007. Saat ini Whitesell tinggal bersama istrinya di Huntersville, North Carol…

Piala FA ThailandPenyelenggaraFATMulai digelar1980; 44 tahun lalu (1980)WilayahThailandJumlah tim736 (2016–17)Piala domestikPiala Championship ThailandPiala internasionalLiga Champions AFCJuara bertahanBuriram United (5 gelar)Tim tersuksesBuriram United, Rajpracha (5 gelar)Televisi penyiarTrueVisionsSitus webFA Cup Piala FA Thailand 2022–23 Piala FA Thailand (Thai: ไทยเอฟเอคัพ), dikenal secara resmi sebagai Piala Asosiasi Sepak Bola Thailand, adalah kompetisi piala…

جورج باغيت طومسون (بالإنجليزية: George Paget Thomson)‏    معلومات شخصية الميلاد 3 مايو 1892 [1][2][3][4]  كامبريدج[5]  تاريخ الوفاة 10 سبتمبر 1975 (83 سنة) [1][2][6][3][4]  كامبريدج[7]  مواطنة المملكة المتحدة المملكة المتحدة لبريطانيا العظمى وأ…

British Labour politician (1887–1962) The Right HonourableThe Lord DaltonPCDalton in 1940Chancellor of the Duchy of LancasterIn office31 May 1948 – 28 February 1950Prime MinisterClement AttleePreceded byThe Lord PakenhamSucceeded byA. V. AlexanderChancellor of the ExchequerIn office27 July 1945 – 13 November 1947Prime MinisterClement AttleePreceded byJohn AndersonSucceeded byStafford CrippsPresident of the Board of TradeIn office22 February 1942 – 23 May 1945Pr…

Сводная таблица (англ. Pivot table) — инструмент обработки данных, служащий для их обобщения. Этот инструмент используется, прежде всего, в программах визуализации данных, таких как электронные таблицы или программное обеспечение для бизнес-анализа. Кроме того, сводная та…

Russian footballer (born 1987) In this name that follows Eastern Slavic naming customs, the patronymic is Vasilievich and the family name is Kudryashov. Fyodor Kudryashov Kudryashov with Russia in 2018Personal informationFull name Fyodor Vasilievich KudryashovDate of birth (1987-04-05) 5 April 1987 (age 37)Place of birth Mamakan, Russian SFSR, Soviet UnionHeight 1.81 m (5 ft 11 in)[1]Position(s) Left backYouth career1997–2002 Sibiryak BratskSenior career*Years T…

Part of a series onBritish law Acts of Parliament of the United Kingdom Year      1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879…

Aleksandar KarakaševićPersonal informationNama lengkapAleksandar KarakaševićKebangsaan Republik Federal Yugoslavia Serbia dan Montenegro SerbiaLahir09 Desember 1975 (umur 48)Zemun, SSR Serbia, YugoslaviaGaya bermainLeft-handed, All round playerTinggi5 ft 10 in Rekam medali Putra Tenis meja Mewakili  Republik Federal Yugoslavia /  Serbia dan Montenegro /  Serbia Tur Dunia ITTF 1996 Tianjin Doubles 2001 Hainan Doubles 2003 Guangzhou Doubles European Champions…

Delroy LindoLindo pada tahun 2008LahirDelroy George Lindo[1]18 November 1952 (umur 71)Lewisham, London, Inggris, Britania RayaPekerjaanAktor, pengarah teaterTahun aktif1976–sekarangSuami/istriNashormeh Lindo[2] Delroy George Lindo (lahir 18 November 1952) adalah seorang aktor dan pengarah teater asal Inggris. Ia dikenal karena membintangi tiga film Spike Lee. Referensi ^ Births, Marriages & Deaths Index of England & Wales, 1916-2005. ^ Delroy Lindo. Ebony. Aug…

ألدو كامباتللي معلومات شخصية الميلاد 7 أبريل 1919(1919-04-07)ميلانو  تاريخ الوفاة 3 يونيو 1984 (عن عمر ناهز 65 عاماً) الطول 1.75 م (5 قدم 9 بوصة) مركز اللعب وسط الجنسية إيطاليا (18 يونيو 1946–3 يونيو 1984) مملكة إيطاليا (7 أبريل 1919–18 يونيو 1946)  المسيرة الاحترافية1 سنوات فريق م. (هـ.) 193…

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2018) مقاطعة ويستون    علم   الإحداثيات 43°50′N 104°34′W / 43.84°N 104.56°W / 43.84…

Kembali kehalaman sebelumnya