Share to: share facebook share twitter share wa share telegram print page

Schröder–Bernstein theorem

In set theory, the Schröder–Bernstein theorem states that, if there exist injective functions f : AB and g : BA between the sets A and B, then there exists a bijective function h : AB.

In terms of the cardinality of the two sets, this classically implies that if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|; that is, A and B are equipotent. This is a useful feature in the ordering of cardinal numbers.

The theorem is named after Felix Bernstein and Ernst Schröder. It is also known as the Cantor–Bernstein theorem or Cantor–Schröder–Bernstein theorem, after Georg Cantor, who first published it (albeit without proof).

Proof

König's definition of a bijection h:A → B from given example injections f:A → B and g:B → A. An element in A and B is denoted by a number and a letter, respectively. The sequence 3 → e → 6 → ... is an A-stopper, leading to the definitions h(3) = f(3) = e, h(6) = f(6), .... The sequence d → 5 → f → ... is a B-stopper, leading to h(5) = g−1(5) = d, .... The sequence ... → a → 1 → c → 4 → ... is doubly infinite, leading to h(1) = g−1(1) = a, h(4) = g−1(4) = c, .... The sequence b → 2 → b is cyclic, leading to h(2) = g−1(2) = b.

The following proof is attributed to Julius König.[1]

Assume without loss of generality that A and B are disjoint. For any a in A or b in B we can form a unique two-sided sequence of elements that are alternately in A and B, by repeatedly applying and to go from A to B and and to go from B to A (where defined; the inverses and are understood as partial functions.)

For any particular a, this sequence may terminate to the left or not, at a point where or is not defined.

By the fact that and are injective functions, each a in A and b in B is in exactly one such sequence to within identity: if an element occurs in two sequences, all elements to the left and to the right must be the same in both, by the definition of the sequences. Therefore, the sequences form a partition of the (disjoint) union of A and B. Hence it suffices to produce a bijection between the elements of A and B in each of the sequences separately, as follows:

Call a sequence an A-stopper if it stops at an element of A, or a B-stopper if it stops at an element of B. Otherwise, call it doubly infinite if all the elements are distinct or cyclic if it repeats. See the picture for examples.

  • For an A-stopper, the function is a bijection between its elements in A and its elements in B.
  • For a B-stopper, the function is a bijection between its elements in B and its elements in A.
  • For a doubly infinite sequence or a cyclic sequence, either or will do ( is used in the picture).

Examples

Bijective function from
Note: is the half open set from 0 to 1, including the boundary 0 and excluding the boundary 1.
Let with and with the two injective functions.
In line with that procedure
Then is a bijective function from .
Bijective function from
Let with
Then for one can use the expansions and with
and now one can set which defines an injective function . (Example: )
And therefore a bijective function can be constructed with the use of and .
In this case is still easy but already gets quite complicated.
Note: Of course there's a more simple way by using the (already bijective) function definition . Then would be the empty set and for all x.

History

The traditional name "Schröder–Bernstein" is based on two proofs published independently in 1898. Cantor is often added because he first stated the theorem in 1887, while Schröder's name is often omitted because his proof turned out to be flawed while the name of Richard Dedekind, who first proved it, is not connected with the theorem. According to Bernstein, Cantor had suggested the name equivalence theorem (Äquivalenzsatz).[2]

Cantor's first statement of the theorem (1887)[3]
  • 1887 Cantor publishes the theorem, however without proof.[3][2]
  • 1887 On July 11, Dedekind proves the theorem (not relying on the axiom of choice)[4] but neither publishes his proof nor tells Cantor about it. Ernst Zermelo discovered Dedekind's proof and in 1908[5] he publishes his own proof based on the chain theory from Dedekind's paper Was sind und was sollen die Zahlen?[2][6]
  • 1895 Cantor states the theorem in his first paper on set theory and transfinite numbers. He obtains it as an easy consequence of the linear order of cardinal numbers.[7][8][9] However, he could not prove the latter theorem, which is shown in 1915 to be equivalent to the axiom of choice by Friedrich Moritz Hartogs.[2][10]
  • 1896 Schröder announces a proof (as a corollary of a theorem by Jevons).[11]
  • 1897 Bernstein, a 19-year-old student in Cantor's Seminar, presents his proof.[12][13]
  • 1897 Almost simultaneously, but independently, Schröder finds a proof.[12][13]
  • 1897 After a visit by Bernstein, Dedekind independently proves the theorem a second time.
  • 1898 Bernstein's proof (not relying on the axiom of choice) is published by Émile Borel in his book on functions.[14] (Communicated by Cantor at the 1897 International Congress of Mathematicians in Zürich.) In the same year, the proof also appears in Bernstein's dissertation.[15][2]
  • 1898 Schröder publishes his proof[16] which, however, is shown to be faulty by Alwin Reinhold Korselt in 1902 (just before Schröder's death),[17] (confirmed by Schröder),[2][18] but Korselt's paper is published only in 1911.

Both proofs of Dedekind are based on his famous 1888 memoir Was sind und was sollen die Zahlen? and derive it as a corollary of a proposition equivalent to statement C in Cantor's paper,[7] which reads A ⊆ B ⊆ C and |A| = |C| implies |A| = |B| = |C|. Cantor observed this property as early as 1882/83 during his studies in set theory and transfinite numbers and was therefore (implicitly) relying on the Axiom of Choice.

Prerequisites

The 1895 proof by Cantor relied, in effect, on the axiom of choice by inferring the result as a corollary of the well-ordering theorem.[8][9] However, König's proof given above shows that the result can also be proved without using the axiom of choice.

On the other hand, König's proof uses the principle of excluded middle to draw a conclusion through case analysis. As such, the above proof is not a constructive one. In fact, in a constructive set theory such as intuitionistic set theory , which adopts the full axiom of separation but dispenses with the principle of excluded middle, assuming the Schröder–Bernstein theorem implies the latter.[19] In turn, there is no proof of König's conclusion in this or weaker constructive theories. Therefore, intuitionists do not accept the statement of the Schröder–Bernstein theorem.[20]

There is also a proof which uses Tarski's fixed point theorem.[21]

See also

Notes

  1. ^ J. König (1906). "Sur la théorie des ensembles". Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences. 143: 110–112.
  2. ^ a b c d e f Felix Hausdorff (2002), Egbert Brieskorn; Srishti D. Chatterji; et al. (eds.), Grundzüge der Mengenlehre (1. ed.), Berlin/Heidelberg: Springer, p. 587, ISBN 978-3-540-42224-2Original edition (1914)
  3. ^ a b Georg Cantor (1887), "Mitteilungen zur Lehre vom Transfiniten", Zeitschrift für Philosophie und philosophische Kritik, 91: 81–125
    Reprinted in: Georg Cantor (1932), Adolf Fraenkel (Lebenslauf); Ernst Zermelo (eds.), Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, Berlin: Springer, pp. 378–439 Here: p.413 bottom
  4. ^ Richard Dedekind (1932), Robert Fricke; Emmy Noether; Øystein Ore (eds.), Gesammelte mathematische Werke, vol. 3, Braunschweig: Friedr. Vieweg & Sohn, pp. 447–449 (Ch.62)
  5. ^ Ernst Zermelo (1908), Felix Klein; Walther von Dyck; David Hilbert; Otto Blumenthal (eds.), "Untersuchungen über die Grundlagen der Mengenlehre I", Mathematische Annalen, 65 (2): 261–281, here: p.271–272, doi:10.1007/bf01449999, ISSN 0025-5831, S2CID 120085563
  6. ^ Richard Dedekind (1888), Was sind und was sollen die Zahlen? (2., unchanged (1893) ed.), Braunschweig: Friedr. Vieweg & Sohn
  7. ^ a b Georg Cantor (1932), Adolf Fraenkel (Lebenslauf); Ernst Zermelo (eds.), Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, Berlin: Springer, pp. 285 ("Satz B")
  8. ^ a b Georg Cantor (1895). "Beiträge zur Begründung der transfiniten Mengenlehre (1)". Mathematische Annalen. 46 (4): 481–512 (Theorem see "Satz B", p.484). doi:10.1007/bf02124929. S2CID 177801164.
  9. ^ a b (Georg Cantor (1897). "Beiträge zur Begründung der transfiniten Mengenlehre (2)". Mathematische Annalen. 49 (2): 207–246. doi:10.1007/bf01444205. S2CID 121665994.)
  10. ^ Friedrich M. Hartogs (1915), Felix Klein; Walther von Dyck; David Hilbert; Otto Blumenthal (eds.), "Über das Problem der Wohlordnung", Mathematische Annalen, 76 (4): 438–443, doi:10.1007/bf01458215, ISSN 0025-5831, S2CID 121598654
  11. ^ Ernst Schröder (1896). "Über G. Cantorsche Sätze". Jahresbericht der Deutschen Mathematiker-Vereinigung. 5: 81–82.
  12. ^ a b Oliver Deiser (2010), Einführung in die Mengenlehre – Die Mengenlehre Georg Cantors und ihre Axiomatisierung durch Ernst Zermelo, Springer-Lehrbuch (3rd, corrected ed.), Berlin/Heidelberg: Springer, pp. 71, 501, doi:10.1007/978-3-642-01445-1, ISBN 978-3-642-01444-4
  13. ^ a b Patrick Suppes (1972), Axiomatic Set Theory (1. ed.), New York: Dover Publications, pp. 95 f, ISBN 978-0-486-61630-8
  14. ^ Émile Borel (1898), Leçons sur la théorie des fonctions, Paris: Gauthier-Villars et fils, pp. 103 ff
  15. ^ Felix Bernstein (1901), Untersuchungen aus der Mengenlehre, Halle a. S.: Buchdruckerei des Waisenhauses
    Reprinted in: Felix Bernstein (1905), Felix Klein; Walther von Dyck; David Hilbert (eds.), "Untersuchungen aus der Mengenlehre", Mathematische Annalen, 61 (1): 117–155, (Theorem see "Satz 1" on p.121), doi:10.1007/bf01457734, ISSN 0025-5831, S2CID 119658724
  16. ^ Ernst Schröder (1898), Kaiserliche Leopoldino-Carolinische Deutsche Akademie der Naturforscher (ed.), "Ueber zwei Definitionen der Endlichkeit und G. Cantor'sche Sätze", Nova Acta, 71 (6): 303–376 (proof: p.336–344)
  17. ^ Alwin R. Korselt (1911), Felix Klein; Walther von Dyck; David Hilbert; Otto Blumenthal (eds.), "Über einen Beweis des Äquivalenzsatzes", Mathematische Annalen, 70 (2): 294–296, doi:10.1007/bf01461161, ISSN 0025-5831, S2CID 119757900
  18. ^ Korselt (1911), p.295
  19. ^ Pradic, Pierre; Brown, Chad E. (2019). "Cantor-Bernstein implies Excluded Middle". arXiv:1904.09193 [math.LO].
  20. ^ Ettore Carruccio (2006). Mathematics and Logic in History and in Contemporary Thought. Transaction Publishers. p. 354. ISBN 978-0-202-30850-0.
  21. ^ Roland Uhl. "Tarski's Fixed Point Theorem". MathWorld. Example 3.

References

External links

Read more information:

Within the Indo-Greek Kingdom there were over 30 kings, often in competition on different territories. Many of them are only known through their coins. Many of the dates, territories, and relationships between Indo-Greek kings are tentative and essentially based on numismatic analysis (find places, overstrikes, monograms, metallurgy, styles), a few Classical writings, and Indian writings and epigraphic evidence. The following list of kings, dates and territories after the reign of Demetrius is d…

Komando Distrik Militer 1014Lambang Kodam XII TanjungpuraNegara IndonesiaAliansiKorem 102/Panju PanjungCabangTNI Angkatan DaratTipe unitKodimPeranSatuan TeritorialBagian dariKodam XII/TanjungpuraMakodimPangkalan Bun, Kalimantan TengahJulukanKodim 1014/PbnPelindungTentara Nasional IndonesiaBaret H I J A U TokohKomandanLetkol Arh. Drajat Tri PutroKepala StafMayor Komando Distrik Militer 1014/Pangkalan Bun atau Kodim 1014/Pbn merupakan salah satu Kodim di jajaran Korem 102/Panju Panj…

Uang logam Antigonus (40-37 SM) Uang logam Hashmonayim (bahasa Inggris: Hasmonean coinage) adalah uang-uang dari logam yang dicetak oleh raja-raja Hashmonayim. Yang diketemukan hanya uang-uang dari perunggu dalam berbagai denominasi; yang terkecil bernilai satu prutah atau setengah prutah. Dua uang denari perak Romawi juga dikaitkan dengan zaman Hashmonayim; salah satunya memuat tulisan BACCIUS JUDAEAS; arti pastinya belum jelas. Keduanya memuat gambar seseorang yang diduga adalah Yehuda Ari…

Pre-Columbian Mesoamerican site in the highlands of Guatemala IximcheLocation within GuatemalaLocationTecpán GuatemalaRegionChimaltenango Department, GuatemalaCoordinates14°44′8.88″N 90°59′46.32″W / 14.7358000°N 90.9962000°W / 14.7358000; -90.9962000HistoryFounded1470Abandoned1524PeriodsLate PostclassicCulturesKaqchikel MayaEventsConquered by:SpainSite notesArchaeologistsJorge Guillemín Map of the Guatemalan highlands in the Postclassic Period Iximcheʼ…

Untuk band, lihat Madison Avenue (band). Madison Avenue, menghadap ke utara dari 40th Street Madison Avenue adalah sebuah jalan utara-selatan di borough Manhattan di New York City, Amerika Serikat yang membawa lalu lintas satu arah ke utara. Jalan ini membentang dari Madison Square (di 23rd Street) ke Jembatan Madison Avenue di 138th Street. Sepanjang bentangan ini, jalan ini melintasi Midtown, Upper East Side (termasuk Carnegie Hill), Spanish Harlem, dan Harlem. Jalan ini dinamai sesuai Madison…

Museum Gletser Norwegia Museum Gletser Norwegia (bahasa Norwegia: Norsk Bremuseum) adalah sebuah museum di Fjærland, Sogn og Fjordane, Norwegia.[1] Bangunan tersebut dirancang oleh arsitek Sverre Fehn. Referensi ^ Anne-Sofie Hjemdahl. Norsk Bremuseum – Bresenteret i Fjærland. Store norske leksikon. Diakses tanggal September 1, 2017.  Pranala luar Norsk Bremuseum Website Climate Exhibition at Norwegian Glacier Museum Wikimedia Commons memiliki media mengenai Norwegian Glacier…

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. State of ParáState BenderaLambang kebesaranLocation of State of Pará in BrazilCountry BrazilCapital and Largest CityBelémPemerintahan • GovernorSimão Jatene • Vice GovernorHelenilson PontesLuas • Total1.247.689,5 km2 (4,817,356 sq mi)Peringkat2ndPopulasi (20…

Putri AnitaPutri Anita dari Oranye-Nassau, van Vollenhoven-van EijkPutri Anita (2013)Kelahiran27 Oktober 1969 (umur 54)Neuchâtel, SwissWangsaWangsa Oranye-NassauAyahLeonardus Antonius van EijkIbuJ.C.M. van Eijk-SteensPasanganPangeran Pieter-ChristiaanAnakEmma van VolenhovenPieter van Vollenhoven Putri Anita Theodora dari Oranye-Nassau, van Vollenhoven-van Eijk (nama lazim Anita Theodora van Vollenhoven-van Eijk, lahir 27 Oktober 1969), adalah istri Pangeran Pieter-Christiaan dari Oranye-Na…

Ban Kong-EkBan Kong-EkLokasi di LaosKoordinat: 14°36′N 107°1′E / 14.600°N 107.017°E / 14.600; 107.017Koordinat: 14°36′N 107°1′E / 14.600°N 107.017°E / 14.600; 107.017Negara LaosProvinsiProvinsi AttopuZona waktuUTC + 7 Ban Kong-Ek adalah sebuah desa di Distrik Phouvong, Provinsi Attopu, Laos tenggara.[1] Referensi ^ Maplandia world gazetteer lbs Distrik Phouvong, provinsi Attopu, LaosKota-kota dan desa-desa Ban Arapruich Ban …

Untuk periodikal abad ke-19, lihat The Galaxy (majalah). Sampul David Stone untuk keluaran pertama Galaxy Galaxy Science Fiction adalah sebuah majalah fiksi ilmiah Amerika, yang diterbitkan dari 1950 sampai 1980. Ini didirikan oleh perusahaan Prancis-Italia, World Editions, yang berniat masuk pasar Amerika. World Editions disewa saat penyunting H. L. Gold, yang cepat membuat Galaxy menjadi majalah fiksi ilmiah utama pada masa itu, berfokus pada cerita tentang masalah sosial ketimbang teknologi. …

Dalam nama Tionghoa ini, nama keluarganya adalah Chen. Untuk orang lain dengan nama yang sama, lihat Chen Dong. Chen DongLahir12 Desember 1978 (umur 45)Luoyang, HenanStatusAktifKebangsaanTiongkokPekerjaanPilot tempurKarier luar angkasaAntariksawan Badan Antariksa Nasional TiongkokPekerjaan saat iniAntariksawanPangkatLetkol Pasukan Pendukung Strategis Tentara Pembebasan RakyatWaktu di luar angkasa32 hari 06 jam 25 menit [1]SeleksiKelompok Tiongkok 2MisiShenzhou 11 Chen Dong (Hanzi se…

Kereta Hefei-WuhanJalur Kereta Hewu di County Jinzhai, AnhuiIkhtisarNama lainJalur HewuNama asli合武铁路JenisKelas IStatusBeroperasiLokasiAnhui dan Hubei, TiongkokTerminus(Rawas)(Rawas)Stasiun13OperasiDibuka31 Desember 2008OperatorKereta api kecepatan tinggi TiongkokData teknisPanjang lintas359 km (223 mi)Lebar sepur1.435 mm (4 ft 8+1⁄2 in) sepur standarElektrifikasi25 kV ACKecepatan operasi250 km/h (160 mph) Kereta Hefei-Wuhan atau Jalur Kereta …

Anna of Tyrol by Alessandro Abondio, 1618 The funeral effigy (without clothes) of Elizabeth of York, mother of King Henry VIII, 1503, Westminster Abbey The Beatles at Madame Tussauds London Cecilia Cheung at Madame Tussauds Hong Kong A wax sculpture is a depiction made using a waxy substance. Often these are effigies, usually of a notable individual, but there are also death masks and scenes with many figures, mostly in relief. The properties of beeswax make it an excellent medium for preparing …

Direktorat Topografi Angkatan DaratLambang Direktorat Topografi Angkatan DaratDibentuk26 April 1946Negara IndonesiaCabangTNI Angkatan DaratBagian dariTentara Nasional IndonesiaMotoLhikita Bhutala Yudha KaryaTokohDirekturBrigadir Jenderal TNI Ir. Adik Sugianto Direktorat Topgrafi Angkatan Darat atau Dittopad adalah adalah Badan Pelaksana Pusat di tingkat Mabes AD yang berkedudukan langsung dibawah KASAD. Dittopad bertugas pokok menyelenggarakan pembinaan kecabangan, pembinaan personel dan fu…

Sebuah casing bom alumunium Mark 4N.[1] Bom nuklir Mark 4 adalah sebuah desain bom nuklir Amerika yang mulai dibuat pada 1949 dan dipakai sampai 1953. Mark 4 berdasarkan pada desain Mark 3 Fat Man pada masa sebelumnya, yang diapaki dalam uji coba Trinity dan serangan bom Nagasaki. Referensi ^ Hansen, Charles (2007) [1995]. Swords of Armaggedon:Volume V. Sunnyvale, CA: Chukelea Productions. hlm. V180, V179. ISBN 978-0-9791915-5-8.  Pranala luar Allbombs.html list of all U.S…

Untuk keuskupan bernama sama dalam Gereja Irlandia, lihat Keuskupan Clogher (Gereja Irlandia). Keuskupan ClogherDioecesis ClogheriensisDeoise ChlochairKatolik Katedral St Macartan, MonaghanLokasiNegara Irlandia Utara Republik IrlandiaProvinsi gerejawiProvinsi ArmaghStatistikLuas3.456 sq mi (8.950 km2)Populasi- Total- Katolik(per 2016)11370088,400 (77.7%)InformasiDenominasiKatolik RomaRitusRitus LatinKatedralKatedral St Macartan, MonaghanPelindungSt Ma…

Charles Savarin Presiden Dominika ke-8Masa jabatan2 Oktober 2013 – 2 Oktober 2023Perdana MenteriRoosevelt Skerrit PendahuluEliud WilliamsPenggantiSylvanie Burton Informasi pribadiLahir2 Oktober 1943 (umur 80)Portsmouth, Kepulauan Leeward InggrisSuami/istriClara Josephine SavarinAlma materRuskin CollegeSunting kotak info • L • B Charles Angelo Savarin (lahir 2 Oktober 1943) adalah seorang politikus dari Dominika yang telah menjadi Presiden Dominika dari 2013 hingga 2…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Bellan RoosRoos pada 1927Lahir(1901-05-25)25 Mei 1901Nynäshamn, SwediaMeninggal8 April 1990(1990-04-08) (umur 88)Stockholm, SwediaPekerjaanPemeranTahun aktif1933-1979 Bellan Roos (25 Mei 1901 – 8 April 1990) adalah seorang peme…

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Kuskus tanah – berita · surat kabar · buku · cendekiawan · JSTOR (Januari 2024) Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala da…

System of flowering plant classification The Cronquist system is a taxonomic classification system of flowering plants. It was developed by Arthur Cronquist in a series of monographs and texts, including The Evolution and Classification of Flowering Plants (1968; 2nd edition, 1988) and An Integrated System of Classification of Flowering Plants (1981) (see Bibliography). Cronquist's system places flowering plants into two broad classes, Magnoliopsida (dicotyledons) and Liliopsida (monocotyledons)…

Kembali kehalaman sebelumnya