Share to: share facebook share twitter share wa share telegram print page

De Morgan's laws

De Morgan's laws represented with Venn diagrams. In each case, the resultant set is the set of all points in any shade of blue.

In propositional logic and Boolean algebra, De Morgan's laws,[1][2][3] also known as De Morgan's theorem,[4] are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician. The rules allow the expression of conjunctions and disjunctions purely in terms of each other via negation.

The rules can be expressed in English as:

  • The negation of "A and B" is the same as "not A or not B."
  • The negation of "A or B" is the same as "not A and not B."

or

  • The complement of the union of two sets is the same as the intersection of their complements
  • The complement of the intersection of two sets is the same as the union of their complements

or

  • not (A or B) = (not A) and (not B)
  • not (A and B) = (not A) or (not B)

where "A or B" is an "inclusive or" meaning at least one of A or B rather than an "exclusive or" that means exactly one of A or B.

In set theory and Boolean algebra, these are written formally as

where

  • and are sets,
  • is the complement of ,
  • is the intersection, and
  • is the union.
The equivalency of ¬φ ∨ ¬ψ and ¬(φ ∧ ψ) is displayed in this truth table.[5]

In formal language, the rules are written as

and

where

De Morgan's law with set subtraction operation.

Another form of De Morgan's law is the following as seen in the right figure.

Applications of the rules include simplification of logical expressions in computer programs and digital circuit designs. De Morgan's laws are an example of a more general concept of mathematical duality.

Formal notation

The negation of conjunction rule may be written in sequent notation:

The negation of disjunction rule may be written as:

In rule form: negation of conjunction

and negation of disjunction

and expressed as truth-functional tautologies or theorems of propositional logic:

where and are propositions expressed in some formal system.

The generalized De Morgan’s laws provide an equivalence for negating a conjunction or disjunction involving multiple terms.
For a set of propositions , the generalized De Morgan’s Laws are as follows:

These laws generalize De Morgan’s original laws for negating conjunctions and disjunctions.

Substitution form

De Morgan's laws are normally shown in the compact form above, with the negation of the output on the left and negation of the inputs on the right. A clearer form for substitution can be stated as:

This emphasizes the need to invert both the inputs and the output, as well as change the operator when doing a substitution.

Set theory and Boolean algebra

In set theory and Boolean algebra, it is often stated as "union and intersection interchange under complementation",[6] which can be formally expressed as:

where:

  • is the negation of , the overline being written above the terms to be negated,
  • is the intersection operator (AND),
  • is the union operator (OR).

Unions and intersections of any number of sets

The generalized form is

where I is some, possibly countably or uncountably infinite, indexing set.

In set notation, De Morgan's laws can be remembered using the mnemonic "break the line, change the sign".[7]

Engineering

In electrical and computer engineering, De Morgan's laws are commonly written as:

and

where:

  • is the logical AND,
  • is the logical OR,
  • the overbar is the logical NOT of what is underneath the overbar.

Text searching

De Morgan's laws commonly apply to text searching using Boolean operators AND, OR, and NOT. Consider a set of documents containing the words "cats" and "dogs". De Morgan's laws hold that these two searches will return the same set of documents:

Search A: NOT (cats OR dogs)
Search B: (NOT cats) AND (NOT dogs)

The corpus of documents containing "cats" or "dogs" can be represented by four documents:

Document 1: Contains only the word "cats".
Document 2: Contains only "dogs".
Document 3: Contains both "cats" and "dogs".
Document 4: Contains neither "cats" nor "dogs".

To evaluate Search A, clearly the search "(cats OR dogs)" will hit on Documents 1, 2, and 3. So the negation of that search (which is Search A) will hit everything else, which is Document 4.

Evaluating Search B, the search "(NOT cats)" will hit on documents that do not contain "cats", which is Documents 2 and 4. Similarly the search "(NOT dogs)" will hit on Documents 1 and 4. Applying the AND operator to these two searches (which is Search B) will hit on the documents that are common to these two searches, which is Document 4.

A similar evaluation can be applied to show that the following two searches will both return Documents 1, 2, and 4:

Search C: NOT (cats AND dogs),
Search D: (NOT cats) OR (NOT dogs).

History

The laws are named after Augustus De Morgan (1806–1871),[8] who introduced a formal version of the laws to classical propositional logic. De Morgan's formulation was influenced by algebraization of logic undertaken by George Boole, which later cemented De Morgan's claim to the find. Nevertheless, a similar observation was made by Aristotle, and was known to Greek and Medieval logicians.[9] For example, in the 14th century, William of Ockham wrote down the words that would result by reading the laws out.[10] Jean Buridan, in his Summulae de Dialectica, also describes rules of conversion that follow the lines of De Morgan's laws.[11] Still, De Morgan is given credit for stating the laws in the terms of modern formal logic, and incorporating them into the language of logic. De Morgan's laws can be proved easily, and may even seem trivial.[12] Nonetheless, these laws are helpful in making valid inferences in proofs and deductive arguments.

Informal proof

De Morgan's theorem may be applied to the negation of a disjunction or the negation of a conjunction in all or part of a formula.

Negation of a disjunction

In the case of its application to a disjunction, consider the following claim: "it is false that either of A or B is true", which is written as:

In that it has been established that neither A nor B is true, then it must follow that both A is not true and B is not true, which may be written directly as:

If either A or B were true, then the disjunction of A and B would be true, making its negation false. Presented in English, this follows the logic that "since two things are both false, it is also false that either of them is true".

Working in the opposite direction, the second expression asserts that A is false and B is false (or equivalently that "not A" and "not B" are true). Knowing this, a disjunction of A and B must be false also. The negation of said disjunction must thus be true, and the result is identical to the first claim.

Negation of a conjunction

The application of De Morgan's theorem to conjunction is very similar to its application to a disjunction both in form and rationale. Consider the following claim: "it is false that A and B are both true", which is written as:

In order for this claim to be true, either or both of A or B must be false, for if they both were true, then the conjunction of A and B would be true, making its negation false. Thus, one (at least) or more of A and B must be false (or equivalently, one or more of "not A" and "not B" must be true). This may be written directly as,

Presented in English, this follows the logic that "since it is false that two things are both true, at least one of them must be false".

Working in the opposite direction again, the second expression asserts that at least one of "not A" and "not B" must be true, or equivalently that at least one of A and B must be false. Since at least one of them must be false, then their conjunction would likewise be false. Negating said conjunction thus results in a true expression, and this expression is identical to the first claim.

Formal proof

Here we use to denote the complement of A, as above in § Set theory and Boolean algebra. The proof that is completed in 2 steps by proving both and .

Part 1

Let . Then, .

Because , it must be the case that or .

If , then , so .

Similarly, if , then , so .

Thus, ;

that is, .

Part 2

To prove the reverse direction, let , and for contradiction assume .

Under that assumption, it must be the case that ,

so it follows that and , and thus and .

However, that means , in contradiction to the hypothesis that ,

therefore, the assumption must not be the case, meaning that .

Hence, ,

that is, .

Conclusion

If and , then ; this concludes the proof of De Morgan's law.

The other De Morgan's law, , is proven similarly.

Generalising De Morgan duality

De Morgan's Laws represented as a circuit with logic gates (International Electrotechnical Commission diagrams).

In extensions of classical propositional logic, the duality still holds (that is, to any logical operator one can always find its dual), since in the presence of the identities governing negation, one may always introduce an operator that is the De Morgan dual of another. This leads to an important property of logics based on classical logic, namely the existence of negation normal forms: any formula is equivalent to another formula where negations only occur applied to the non-logical atoms of the formula. The existence of negation normal forms drives many applications, for example in digital circuit design, where it is used to manipulate the types of logic gates, and in formal logic, where it is needed to find the conjunctive normal form and disjunctive normal form of a formula. Computer programmers use them to simplify or properly negate complicated logical conditions. They are also often useful in computations in elementary probability theory.

Let one define the dual of any propositional operator P(p, q, ...) depending on elementary propositions p, q, ... to be the operator defined by

Extension to predicate and modal logic

This duality can be generalised to quantifiers, so for example the universal quantifier and existential quantifier are duals:

To relate these quantifier dualities to the De Morgan laws, set up a model with some small number of elements in its domain D, such as

D = {a, b, c}.

Then

and

But, using De Morgan's laws,

and

verifying the quantifier dualities in the model.

Then, the quantifier dualities can be extended further to modal logic, relating the box ("necessarily") and diamond ("possibly") operators:

In its application to the alethic modalities of possibility and necessity, Aristotle observed this case, and in the case of normal modal logic, the relationship of these modal operators to the quantification can be understood by setting up models using Kripke semantics.

In intuitionistic logic

Three out of the four implications of de Morgan's laws hold in intuitionistic logic. Specifically, we have

and

The converse of the last implication does not hold in pure intuitionistic logic. That is, the failure of the joint proposition cannot necessarily be resolved to the failure of either of the two conjuncts. For example, from knowing it not to be the case that both Alice and Bob showed up to their date, it does not follow who did not show up. The latter principle is equivalent to the principle of the weak excluded middle ,

This weak form can be used as a foundation for an intermediate logic. For a refined version of the failing law concerning existential statements, see the lesser limited principle of omniscience , which however is different from .

The validity of the other three De Morgan's laws remains true if negation is replaced by implication for some arbitrary constant predicate C, meaning that the above laws are still true in minimal logic.

Similarly to the above, the quantifier laws:

and

are tautologies even in minimal logic with negation replaced with implying a fixed , while the converse of the last law does not have to be true in general.

Further, one still has

but their inversion implies excluded middle, .

In computer engineering

De Morgan's laws are widely used in computer engineering and digital logic for the purpose of simplifying circuit designs.[13]

See also

References

  1. ^ Copi, Irving M.; Cohen, Carl; McMahon, Kenneth (2016). Introduction to Logic. doi:10.4324/9781315510897. ISBN 9781315510880.
  2. ^ Hurley, Patrick J. (2015), A Concise Introduction to Logic (12th ed.), Cengage Learning, ISBN 978-1-285-19654-1
  3. ^ Moore, Brooke Noel (2012). Critical thinking. Richard Parker (10th ed.). New York: McGraw-Hill. ISBN 978-0-07-803828-0. OCLC 689858599.
  4. ^ DeMorgan's [sic] Theorem
  5. ^ Kashef, Arman. (2023), In Quest of Univeral Logic: A brief overview of formal logic's evolution, doi:10.13140/RG.2.2.24043.82724/1
  6. ^ Boolean Algebra by R. L. Goodstein. ISBN 0-486-45894-6
  7. ^ 2000 Solved Problems in Digital Electronics by S. P. Bali
  8. ^ "DeMorgan's Theorems". Middle Tennessee State University. Archived from the original on 2008-03-23.
  9. ^ Bocheński's History of Formal Logic
  10. ^ William of Ockham, Summa Logicae, part II, sections 32 and 33.
  11. ^ Jean Buridan, Summula de Dialectica. Trans. Gyula Klima. New Haven: Yale University Press, 2001. See especially Treatise 1, Chapter 7, Section 5. ISBN 0-300-08425-0
  12. ^ Robert H. Orr. "Augustus De Morgan (1806–1871)". Indiana University–Purdue University Indianapolis. Archived from the original on 2010-07-15.
  13. ^ Wirth, Niklaus (1995), Digital Circuit Design for Computer Science Students: An Introductory Textbook, Springer, p. 16, ISBN 9783540585770

External links

Read more information:

Taman Rumah Sakit di Arles (F519)SenimanVincent van GoghMediumMinyak di atas kanvasUkuran73.0 cm × 92.0 cm (28.7 in × 36.2 in)LokasiKoleksi Reinhart, Winterthur, Swiss Rumah Sakit di Arles adalah subyek dari dua lukisan yang Vincent van Gogh buat di rumah sakit dimana ia singgah pada Desember 1888 dan kembali pada Januari 1889. Rumah sakit tersebut terletak di Arles, selatan Prancis. Salah satu lukisan berada pada taman tengah antara empat bangunan yan…

Bronisław Malinowsk Bronisław Kasper Malinowski (7 April 1884 – 16 Mei 1942) adalah nama seorang antropolog Polandia yang diakui sebagai salah satu antropolog terpenting pada abad ke-20 karena jasa dan kontribusinya yang besar dalam bidang etnografi, reciprocity, dan penelitian tentang Melanesia. Biografi Malinowski lahir di Kraków, Austria-Hungaria (Polandia saat ini) dalam sebuah keluarga ekonomi menengah-atas. Ayahnya adalah seorang profesor dan ibunya adalah putri dari kel…

This is the talk page for discussing improvements to the Politics of the European Union template. Put new text under old text. Click here to start a new topic. New to Wikipedia? Welcome! Learn to edit; get help. Assume good faith Be polite and avoid personal attacks Be welcoming to newcomers Seek dispute resolution if needed European Union Template‑class European Union portalThis template is within the scope of WikiProject European Union, a collaborative effort to improve the coverage of the E…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Dahsyatnya Awards 2015 – berita · surat kabar · buku · cendekiawan · JSTOR Dahsyat Awards 2015 adalah acara penganugerahan Dahsyatnya Awards ke-7 yang merupakan ajang apresiasi bagi insan musik Indonesia ya…

Ida Bagus Made Sutha Ida Bagus Made Sutha adalah seorang politikus Indonesia yang menjabat sebagai Bupati Bangli periode 1960-1969. Ia berasal dari Griya Giri Bukit, Kota Bangli. Ia merupakan ayah dari Ida Bagus Gede Agung Ladip yang kemudian menjadi Bupati Bangli periode 1990-2000 serta birokrat Bagian Humas Setda Provinsi Bali Ida Bagus Ludra. Ia meninggal mendadak setelah ambruk saat berpidato di sidang DPRD Bangli pada tahun 1969.[1] Referensi ^ Bupati Pertama Meninggal Saat Pidato, …

Kopral Dua KKO (Anumerta)Harun Tohir bin MahdarBerkas:Harun.KKO.jpg Informasi pribadiLahir(1947-04-14)14 April 1947 Bawean, Gresik, Jawa Timur, IndonesiaMeninggal17 Oktober 1968(1968-10-17) (umur 21) Penjara Changi, Singapura[1][2]MakamTMP Kalibata, JakartaPenghargaan sipilBintang Sakti, Pahlawan Nasional IndonesiaKarier militerPihak IndonesiaDinas/cabang TNI Angkatan LautMasa dinas1962–1968Pangkat Kopral Dua KKO (Anumerta)SatuanKKO (Taifib)Sunting kotak info…

Satelit Nimiq adalah armada satelit telekomunikasi geostasioner yang dimiliki oleh Telesat dan digunakan oleh penyedia televisi satelit termasuk Bell TV dan EchoStar (Dish Network). 'Nimiq' adalah kata Inuit digunakan untuk suatu objek atau kekuatan yang mengikat sesuatu bersama-sama. Sebuah kontes pada tahun 1998 diadakan untuk memilih nama satelit ini. Kontes ini menarik lebih dari 36.000 entri. Referensi Telesat Canada Webseite lbsLockheed MartinDivisi dananak perusahaanTerkini LM Aeronautics…

Wilayah Chūgoku 中国地方WilayahWilayah Chūgoku di JepangLuas • Total31.921,87 km2 (12,325,10 sq mi)Populasi (Oktober 1, 2015) • Total7.438.037 • Kepadatan233,0/km2 (603/sq mi)Zona waktuUTC+09:00 Wilayah Chūgoku (中国地方 Chūgoku-chihō) terletak di bagian barat dari Honshū, pulau terbesar di Jepang. Secara harfiah berarti Negara Pertengahan, hasil pembagian dari Negara Dekat (近国 Kingoku). Negara Pertengahan dan Negara …

Visible part of the ear that is outside the head Auricle is the former name of the atrium (heart) and is still used to describe this chamber in some other animals AuricleThe auricula. Lateral surface.DetailsArteryposterior auricular, anterior auricularNerveTrigeminal nerve, great auricular nerve, lesser occipital nerveLymphTo pre- and post-auricular nodes, nodes of parotid and cervical chainsIdentifiersLatinauriculaMeSHD054644TA98A15.3.01.002TA2104, 6863FMA56580Anatomical terminology[edit on…

Fritz HaberFritz Haber c. 1905Lahir(1868-12-09)9 Desember 1868Breslau, JermanMeninggal29 Januari 1934(1934-01-29) (umur 65)Basel, SwissKebangsaanJermanAlmamaterUniversity of Heidelberg, Universitas Humboldt BerlinUniversitas Teknologi BerlinDikenal atasProses HaberLahir-Haber sepedaPupukReaksi Haber-WeissPerang kimiaBahan peledakSuami/istriClara Immerwahr (1901-1915; kematian istrinya; 1 anak)Charlotte Nathan (1917-1927; bercerai; 2 anak)PenghargaanPenghargaan Nobel untuk Kimia (1918)Karier…

ElvisAlbum studio karya Elvis PresleyDirilis19 Oktober 1956Direkam30 Januari; September 1st-3rd, 1956StudioRCA Studio 1 - New York, Radio Recorders Studio 1, HollywoodGenreRock and roll, rockabilly, rhythm and blues, countryDurasi29:47LabelRCA VictorProduserSteve SholesKronologi Elvis Presley Elvis Presley(1956)Elvis Presley1956 Elvis(1956) Loving You(1957)Loving You1957 Singel dalam album Elvis Love MeDirilis: 1956 When My Blue Moon Turns to Gold AgainDirilis: 1956 ParalyzedDirilis: 1956 Ol…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2020. Daftar wali kota Las Vegas, Nevada ini dikumpulkan dari dokumen domain umum yang disediakan oleh Pegawai Kota. Wali kota Las Vegas Masa Wali kota Catatan 1911-1913 Peter Buol 1913-1919 W. L. Hawkins 1919-1921 W. E. Ferron 1921 Horace Jones Meninggal ketika …

iPhone 11iPhone 11 in WhiteMerekApple IncSeri13thRilis pertama20 September 2019; 4 tahun lalu (2019-09-20)Ketersediaan menurut negara September 20, 2019 Australia Austria Belgium Canada China, Mainland Czech Republic Denmark Finland France Germany Hong Kong Ireland Italy Japan Mexico Netherlands New Zealand Norway Poland Portugal Russia Saudi Arabia Singapore Spain Sweden Switzerland Taiwan United Arab Emirates United Kingdom United States September 26, 2019 Israel September 27, 2019 Albani…

Justin KellyLahir7 Maret 1992 (umur 32)Toronto, Ontario, KanadaKebangsaanKanadaPekerjaanAktorTahun aktif2007–sekarangTanda tangan Justin Kelly (lahir pada 7 Maret 1992) adalah seorang aktor Kanada. Ia terkenal atas perannya sebagai Noah Jackson dalam serial orisinal Family channel yakni The Latest Buzz dan sebagai Jake Martin dalam Degrassi.[1][2] Filmografi Film Tahun Film Peran Keterangan 2008 For The Love Of Grace Remaja FTV 2010 The Jensen Project Brody Thompson F…

Patung Gajasinga, kini menjadi koleksi Museum Patung Cham, kota Danang, Vietnam. Gajasinga atau gajasiha (Dewanagari: गजसिंह; ,IAST: Gajasiṃha,; bahasa Pali: gajasīha) adalah hibrida mitologis dalam kepercayaan Hindu, berwujud sinha atau rajasiha (singa dalam legenda) dengan kepala atau belalai gajah. Ia didapati sebagai ragam hias pada kesenian India dan Sri Lanka,[1] dan dipergunakan sebagai lambang heraldik di beberapa negara Asia Tenggara, terutama K…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Karl Toman (2 Januari 1884 – 5 Februari 1950) adalah seorang politisi Austria dan pekerja serikat buruh. Toman berasal dari keluarga kelas pekerja. Dia kemudian menjadi pekerja industri logam.[1] Toman bergabung dengan Partai Buru…

Berikut tokoh-tokoh terkenal yang merupakan kader Partai Persatuan Pembangunan. Sekretaris Jenderal Berikut Merupakan Sekretaris Jenderal PPP Potret Nama Menjabat Ketua Umum Mardinsyah 1984–1989 Djaelani Naro Matori Abdul Djalil 1989–1994 Ismail Hasan Metareum Tosari Widjaja 1994–1998 Alimarwan Hanan 1998–2003 Hamzah Haz Yunus Yosfiah 2003–2007 Irgan Chairul Mahfiz 2007–2011 Suryadharma Ali Muhammad Romahurmuziy 2011–2014 Arsul Sani 2016–2021 Muhammad Romahurmuziy Suharso Monoarf…

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut). …

Cochem-Zell rural district of Rhineland-Palatinate (en) Tempat categoria:Articles mancats de coordenades Negara berdaulatJermanNegara bagian di JermanRheinland-Pfalz NegaraJerman Ibu kotaCochem Pembagian administratifCochem (en) Kaisersesch (en) Ulmen (en) Zell (en) PendudukTotal61.587  (2019 )GeografiLuas wilayah691,82 km² [convert: unit tak dikenal]Ketinggian284 m Berbatasan denganRhein-Hunsrück Bernkastel-Wittlich Daun (distrik) Mayen-Koblenz Organisasi politikAnggota dariLandkrei…

Вождение медведя с козой и барабанщиком на Святки Культ медведя — особое отношение к медведю, почитание его, комплекс обычаев и обрядов по отношению к нему. Медведь фигурирует в мифах многих народов Евразии и Америки. В разных традициях он мог являться божеством, культурн…

Kembali kehalaman sebelumnya