Share to: share facebook share twitter share wa share telegram print page

Paradoxes of set theory

This article contains a discussion of paradoxes of set theory. As with most mathematical paradoxes, they generally reveal surprising and counter-intuitive mathematical results, rather than actual logical contradictions within modern axiomatic set theory.

Basics

Cardinal numbers

Set theory as conceived by Georg Cantor assumes the existence of infinite sets. As this assumption cannot be proved from first principles it has been introduced into axiomatic set theory by the axiom of infinity, which asserts the existence of the set N of natural numbers. Every infinite set which can be enumerated by natural numbers is the same size (cardinality) as N, and is said to be countable. Examples of countably infinite sets are the natural numbers, the even numbers, the prime numbers, and also all the rational numbers, i.e., the fractions. These sets have in common the cardinal number |N| = (aleph-nought), a number greater than every natural number.

Cardinal numbers can be defined as follows. Define two sets to have the same size by: there exists a bijection between the two sets (a one-to-one correspondence between the elements). Then a cardinal number is, by definition, a class consisting of all sets of the same size. To have the same size is an equivalence relation, and the cardinal numbers are the equivalence classes.

Ordinal numbers

Besides the cardinality, which describes the size of a set, ordered sets also form a subject of set theory. The axiom of choice guarantees that every set can be well-ordered, which means that a total order can be imposed on its elements such that every nonempty subset has a first element with respect to that order. The order of a well-ordered set is described by an ordinal number. For instance, 3 is the ordinal number of the set {0, 1, 2} with the usual order 0 < 1 < 2; and ω is the ordinal number of the set of all natural numbers ordered the usual way. Neglecting the order, we are left with the cardinal number |N| = |ω| = .

Ordinal numbers can be defined with the same method used for cardinal numbers. Define two well-ordered sets to have the same order type by: there exists a bijection between the two sets respecting the order: smaller elements are mapped to smaller elements. Then an ordinal number is, by definition, a class consisting of all well-ordered sets of the same order type. To have the same order type is an equivalence relation on the class of well-ordered sets, and the ordinal numbers are the equivalence classes.

Two sets of the same order type have the same cardinality. The converse is not true in general for infinite sets: it is possible to impose different well-orderings on the set of natural numbers that give rise to different ordinal numbers.

There is a natural ordering on the ordinals, which is itself a well-ordering. Given any ordinal α, one can consider the set of all ordinals less than α. This set turns out to have ordinal number α. This observation is used for a different way of introducing the ordinals, in which an ordinal is equated with the set of all smaller ordinals. This form of ordinal number is thus a canonical representative of the earlier form of equivalence class.

Power sets

By forming all subsets of a set S (all possible choices of its elements), we obtain the power set P(S). Georg Cantor proved that the power set is always larger than the set, i.e., |P(S)| > |S|. A special case of Cantor's theorem proves that the set of all real numbers R cannot be enumerated by natural numbers. R is uncountable: |R| > |N|.

Paradoxes of the infinite sets

Instead of relying on ambiguous descriptions such as "that which cannot be enlarged" or "increasing without bound", set theory provides definitions for the term infinite set to give an unambiguous meaning to phrases such as "the set of all natural numbers is infinite". Just as for finite sets, the theory makes further definitions which allow us to consistently compare two infinite sets as regards whether one set is "larger than", "smaller than", or "the same size as" the other. But not every intuition regarding the size of finite sets applies to the size of infinite sets, leading to various apparently paradoxical results regarding enumeration, size, measure and order.

Paradoxes of enumeration

Before set theory was introduced, the notion of the size of a set had been problematic. It had been discussed by Galileo Galilei and Bernard Bolzano, among others. Are there as many natural numbers as squares of natural numbers when measured by the method of enumeration?

  • The answer is yes, because for every natural number n there is a square number n2, and likewise the other way around.
  • The answer is no, because the squares are a proper subset of the naturals: every square is a natural number but there are natural numbers, like 2, which are not squares of natural numbers.

By defining the notion of the size of a set in terms of its cardinality, the issue can be settled. Since there is a bijection between the two sets involved, this follows in fact directly from the definition of the cardinality of a set.

See Hilbert's paradox of the Grand Hotel for more on paradoxes of enumeration.

Je le vois, mais je ne crois pas

"I see it but I don't believe," Cantor wrote to Richard Dedekind after proving that the set of points of a square has the same cardinality as that of the points on just an edge of the square: the cardinality of the continuum.

This demonstrates that the "size" of sets as defined by cardinality alone is not the only useful way of comparing sets. Measure theory provides a more nuanced theory of size that conforms to our intuition that length and area are incompatible measures of size.

The evidence strongly suggests that Cantor was quite confident in the result itself and that his comment to Dedekind refers instead to his then-still-lingering concerns about the validity of his proof of it.[1] Nevertheless, Cantor's remark would also serve nicely to express the surprise that so many mathematicians after him have experienced on first encountering a result that is so counter-intuitive.

Paradoxes of well-ordering

In 1904 Ernst Zermelo proved by means of the axiom of choice (which was introduced for this reason) that every set can be well-ordered. In 1963 Paul J. Cohen showed that in Zermelo–Fraenkel set theory without the axiom of choice it is not possible to prove the existence of a well-ordering of the real numbers.

However, the ability to well order any set allows certain constructions to be performed that have been called paradoxical. One example is the Banach–Tarski paradox, a theorem widely considered to be nonintuitive. It states that it is possible to decompose a ball of a fixed radius into a finite number of pieces and then move and reassemble those pieces by ordinary translations and rotations (with no scaling) to obtain two copies from the one original copy. The construction of these pieces requires the axiom of choice; the pieces are not simple regions of the ball, but complicated subsets.

Paradoxes of the Supertask

In set theory, an infinite set is not considered to be created by some mathematical process such as "adding one element" that is then carried out "an infinite number of times". Instead, a particular infinite set (such as the set of all natural numbers) is said to already exist, "by fiat", as an assumption or an axiom. Given this infinite set, other infinite sets are then proven to exist as well, as a logical consequence. But it is still a natural philosophical question to contemplate some physical action that actually completes after an infinite number of discrete steps; and the interpretation of this question using set theory gives rise to the paradoxes of the supertask.

The diary of Tristram Shandy

Tristram Shandy, the hero of a novel by Laurence Sterne, writes his autobiography so conscientiously that it takes him one year to lay down the events of one day. If he is mortal he can never terminate; but if he lived forever then no part of his diary would remain unwritten, for to each day of his life a year devoted to that day's description would correspond.

The Ross-Littlewood paradox

An increased version of this type of paradox shifts the infinitely remote finish to a finite time. Fill a huge reservoir with balls enumerated by numbers 1 to 10 and take off ball number 1. Then add the balls enumerated by numbers 11 to 20 and take off number 2. Continue to add balls enumerated by numbers 10n - 9 to 10n and to remove ball number n for all natural numbers n = 3, 4, 5, .... Let the first transaction last half an hour, let the second transaction last quarter an hour, and so on, so that all transactions are finished after one hour. Obviously the set of balls in the reservoir increases without bound. Nevertheless, after one hour the reservoir is empty because for every ball the time of removal is known.

The paradox is further increased by the significance of the removal sequence. If the balls are not removed in the sequence 1, 2, 3, ... but in the sequence 1, 11, 21, ... after one hour infinitely many balls populate the reservoir, although the same amount of material as before has been moved.

Paradoxes of proof and definability

For all its usefulness in resolving questions regarding infinite sets, naive set theory has some fatal flaws. In particular, it is prey to logical paradoxes such as those exposed by Russell's paradox. The discovery of these paradoxes revealed that not all sets which can be described in the language of naive set theory can actually be said to exist without creating a contradiction. The 20th century saw a resolution to these paradoxes in the development of the various axiomatizations of set theories such as ZFC and NBG in common use today. However, the gap between the very formalized and symbolic language of these theories and our typical informal use of mathematical language results in various paradoxical situations, as well as the philosophical question of exactly what it is that such formal systems actually propose to be talking about.

Early paradoxes: the set of all sets

In 1897 the Italian mathematician Cesare Burali-Forti discovered that there is no set containing all ordinal numbers. As every ordinal number is defined by a set of smaller ordinal numbers, the well-ordered set Ω of all ordinal numbers (if it exists) fits the definition and is itself an ordinal. On the other hand, no ordinal number can contain itself, so Ω cannot be an ordinal. Therefore, the set of all ordinal numbers cannot exist.

By the end of the 19th century Cantor was aware of the non-existence of the set of all cardinal numbers and the set of all ordinal numbers. In letters to David Hilbert and Richard Dedekind he wrote about inconsistent sets, the elements of which cannot be thought of as being all together, and he used this result to prove that every consistent set has a cardinal number.

After all this, the version of the "set of all sets" paradox conceived by Bertrand Russell in 1903 led to a serious crisis in set theory. Russell recognized that the statement x = x is true for every set, and thus the set of all sets is defined by {x | x = x}. In 1906 he constructed several paradox sets, the most famous of which is the set of all sets which do not contain themselves. Russell himself explained this abstract idea by means of some very concrete pictures. One example, known as the Barber paradox, states: The male barber who shaves all and only men who do not shave themselves has to shave himself only if he does not shave himself.

There are close similarities between Russell's paradox in set theory and the Grelling–Nelson paradox, which demonstrates a paradox in natural language.

Paradoxes by change of language

König's paradox

In 1905, the Hungarian mathematician Julius König published a paradox based on the fact that there are only countably many finite definitions. If we imagine the real numbers as a well-ordered set, those real numbers which can be finitely defined form a subset. Hence in this well-order there should be a first real number that is not finitely definable. This is paradoxical, because this real number has just been finitely defined by the last sentence. This leads to a contradiction in naive set theory.

This paradox is avoided in axiomatic set theory. Although it is possible to represent a proposition about a set as a set, by a system of codes known as Gödel numbers, there is no formula in the language of set theory which holds exactly when is a code for a finite proposition about a set, is a set, and holds for . This result is known as Tarski's indefinability theorem; it applies to a wide class of formal systems including all commonly studied axiomatizations of set theory.

Richard's paradox

In the same year the French mathematician Jules Richard used a variant of Cantor's diagonal method to obtain another contradiction in naive set theory. Consider the set A of all finite agglomerations of words. The set E of all finite definitions of real numbers is a subset of A. As A is countable, so is E. Let p be the nth decimal of the nth real number defined by the set E; we form a number N having zero for the integral part and p + 1 for the nth decimal if p is not equal either to 8 or 9, and unity if p is equal to 8 or 9. This number N is not defined by the set E because it differs from any finitely defined real number, namely from the nth number by the nth digit. But N has been defined by a finite number of words in this paragraph. It should therefore be in the set E. That is a contradiction.

As with König's paradox, this paradox cannot be formalized in axiomatic set theory because it requires the ability to tell whether a description applies to a particular set (or, equivalently, to tell whether a formula is actually the definition of a single set).

Paradox of Löwenheim and Skolem

Based upon work of the German mathematician Leopold Löwenheim (1915) the Norwegian logician Thoralf Skolem showed in 1922 that every consistent theory of first-order predicate calculus, such as set theory, has an at most countable model. However, Cantor's theorem proves that there are uncountable sets. The root of this seeming paradox is that the countability or noncountability of a set is not always absolute, but can depend on the model in which the cardinality is measured. It is possible for a set to be uncountable in one model of set theory but countable in a larger model (because the bijections that establish countability are in the larger model but not the smaller one).

See also

Notes

References

  • G. Cantor: Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, E. Zermelo (Ed.), Olms, Hildesheim 1966.
  • H. Meschkowski, W. Nilson: Georg Cantor - Briefe, Springer, Berlin 1991.
  • A. Fraenkel: Einleitung in die Mengenlehre, Springer, Berlin 1923.
  • A. A. Fraenkel, A. Levy: Abstract Set Theory, North Holland, Amsterdam 1976.
  • F. Hausdorff: Grundzüge der Mengenlehre, Chelsea, New York 1965.
  • B. Russell: The principles of mathematics I, Cambridge 1903.
  • B. Russell: On some difficulties in the theory of transfinite numbers and order types, Proc. London Math. Soc. (2) 4 (1907) 29-53.
  • P. J. Cohen: Set Theory and the Continuum Hypothesis, Benjamin, New York 1966.
  • S. Wagon: The Banach–Tarski Paradox, Cambridge University Press, Cambridge 1985.
  • A. N. Whitehead, B. Russell: Principia Mathematica I, Cambridge Univ. Press, Cambridge 1910, p. 64.
  • E. Zermelo: Neuer Beweis für die Möglichkeit einer Wohlordnung, Math. Ann. 65 (1908) p. 107-128.

External links

  • Principia Mathematica
  • Definability paradoxes by Timothy Gowers
  • "Russell's Paradox". Internet Encyclopedia of Philosophy.
  • "Russell-Myhill Paradox". Internet Encyclopedia of Philosophy.
Read more information:

sebuah versi LQFP dari Z80. Zilog Z80 adalah sebuah mikroprosesor yang didesain dan dijual oleh Zilog mulai Juli 1976. Mikroprosesor ini digunakan secara luas pada komputer desktop maupun komputer embedded. Mikroprosesor ini adalah salah satu CPU yang paling populer sepanjang masa. Walaupun Zilog mencoba membuat versi 16-bit (Z800 / Z280) dan 32-bit (Z380) dari arsitektur Z-80 yang 8/16-bit, tetapi chip pengembangan tersebut tidak pernah sukses. Zilog juga berusaha keras menembus pasar workstati…

The Dark ChapterAlbum studio karya Michael RomeoDirilisApril 1994 (1994-04)[1]Direkam1992–94[2]GenreInstrumental rock, neo-classical metal, progressive metalDurasi42:49LabelZeroProduserMichael Romeo The Dark Chapter adalah album studio dari gitaris Symphony X Michael Romeo dirilis oleh Zero Corporation (Jepang) pada bulan April 1994, dan dirilis ulang oleh Inside Out Music pada tahun 2000. Daftar lagu Seluruh musik diciptakan oleh Michael Romeo kecuali trek 8.No.JudulD…

Kapal Rusia dengan jack di depan dan bendera kapal angaktan laut di belakangnya Bendera kapal angkatan laut adalah bendera kapal yang digunakan oleh kapal-kapal angkatan laut dari berbagai negara untuk menunjukkan kebangsaan mereka.[1] Bendera kapal ini bisa sama ataupun berbeda dari bendera kapal sipil atau bendera kapal negaranya sendiri. Bendera kapal ini juga dapat dikenal sebagai bendera kapal perang. Versi besar dari bendera kapal angkatan laut yang dikibarkan pada tiang kapal pera…

Marcel SchrötterSchrötter di Grand Prix Catalan 2015KebangsaanJermanLahir02 Januari 1993 (umur 31)[1]Vilgertshofen, JermanTim saat iniLiqui Moly Intact GPNo. motor23 Catatan statistik Karier Kejuaraan Dunia Moto2Tahun aktif2012– PabrikanBimota, Kalex, Tech 3, Suter Juara dunia0 Klasemen 20209th (81 poin) Start Menang Podium Pole F. lap Poin 143 0 5 3 0 629 Karier Kejuaraan Dunia Moto3Tahun aktif2012 PabrikanMahindra Juara dunia0 Klasemen 201233rd (4 poin) Start Menang Podium Pol…

Ini adalah nama Batak Toba, marganya adalah Lumbantobing. Paola TobingLahirPaola Serena Novelli Tobing29 Juli 1990 (umur 33)Denpasar, Bali, IndonesiaNama lainPaola TobingPekerjaanaktrisTahun aktif2007-SekarangAnakAuroraAbrianna Paola Serena Novelli Tobing (lahir 29 Juli 1990) adalah aktris muda Indonesia yang merupakan adik dari aktor Giovani Yosafat Tobing. Paola adalah pemeran utama dalam sinetron Mini di RCTI. Televisi Sinetron Tahun Judul Peran Produksi 2003—2005 Inikah Rasa…

Arab royal woman (died 1934) In this Arabic name, the surname is Al Shammari. Fahda bint Asi Al ShammariDied1934Spouses Saud bin Abdulaziz, Emir of Jabal Shammar ​ ​(m. 1916; died 1920)​ Abdulaziz bin Abdulrahman, King of Saudi Arabia ​ ​(m. 1922)​ Issue List Mishaal bin Saud Al Rashid Abdulaziz bin Saud Al Rashid King Abdullah bin Abdulaziz Nouf bint Abdulaziz Al Saud Seeta bint Abdulaziz Al Saud NamesFahda bint …

Infiltrasi adalah aliran air ke dalam tanah melalui permukaan tanah itu sendiri.[1] Di dalam tanah, air mengalir ke arah pinggir, sebagai aliran perantara menuju mata air, danau, dan sungai atau secara vertikal yang dikenal dengan penyaringan menuju air tanah.[1] Laju infilltrasi umumnya dinyatakan dalam satuan yang sama dengan satuan intensitas curah hujan, yaitu milimeter per jam (mm/jam).[2] Air infiltrasi yang tidak kembali lagi ke atmosfer melalui proses evapotranspi…

Coluber Coluber constrictor Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Subfilum: Vertebrata Kelas: Reptilia Ordo: Squamata Subordo: Serpentes Famili: Colubridae Subfamili: Colubrinae Genus: ColuberLinnaeus, 1758 Sinonim MasticophisLiophis Coluber adalah genus ular cambuk bertubuh ramping, panjang, dan gesit (fast-moving) dari suku Colubridae. Ular-ular ini tersebar luas di dunia dan mayoritas terdapat di Amerika. Pada sistem klasifikasi tertentu, genus ini juga meliputi genus ular cam…

Lambang Ordo Santo Yohanes. Lambang pribadi Grand Master akan ditampilkan di samping lambang ordo pada abad ke-14 hingga ke-15. Dimulai pada pertengahan abad ke-15, Grand Master akan seperempat lambang ordo dengan miliknya sendiri. Ini adalah daftar grand master dari Knights Hospitaller, termasuk kelanjutannya sebagai Ordo Militer Berdaulat Malta setelah 1798. Ini juga termasuk yang tidak diakui anti-grand master dan letnan atau pelayan selama lowongan. Dalam daftar kepala Ordo, gelar Grand Mast…

Konser Gipsy Kings Gipsy Kings adalah sebuah grup musik dari Arles dan Montpellier (tepatnya dari sebuah dusun (Cité) di pinggiran Montpellier yang disebut Phobos yang telah digusur) di Prancis. Orang tua para anggota grup musik ini melarikan diri dari Spanyol semasa Perang Sipil di negera tersebut. Mereka adalah musisi Calé (Gitano), terkenal karena membawa musik Rumba Catalana, versi pop dari musik flamenco tradisional, pada pecinta musik dunia. Musik mereka memiliki gaya Rumba Flamenca khus…

Halictidae Halictidae Halictus scabiosae - MHNTTumbuhanAdalah penyerbuk dariEriogonum latifolium (en) dan Aetheorhiza bulbosa (en) TaksonomiKerajaanAnimaliaFilumArthropodaKelasInsectaOrdoHymenopteraUpaordoApocritaInfraordoAculeataSuperfamiliApoideaFamiliHalictidae Thomson, 1869 Subfamilies Halictinae Nomiinae Nomioidinae Rophitinae lbs Halictidae adalah famili lebah terbesar kedua [1] (clade Anthophila ) dengan hampir 4.500 spesies. [2] Mereka biasa disebut lebah keringat (teruta…

Cet article concerne la langue slovène. Pour le peuple slovène, voir Slovènes. Ne pas confondre avec le slovaque (slovenčina), le slovince ou le slavon (vieux-slave, словѣньскыи ѩзыкъ, slověnĭskyj językŭ). Slovèneslovenščina Pays Slovénie, Autriche, Italie Nombre de locuteurs 2,2 millions Nom des locuteurs slovénophones Typologie SVO + ordre libre, flexionnelle, accusative, accentuelle, à accent de hauteur Classification par famille - langues indo-européennes -…

Brandi LoveLahirTracey Lynn Livermore[1]29 Maret 1973 (umur 50)[2]Raleigh, Carolina Utara, Amerika Serikat[2]KebangsaanAmerika[2]Tinggi5 ft 7 in (1,70 m)[2]Berat125 pon (57 kg)[2]Suami/istriChris Potoski[1]Situs webhttp://www.brandilove.com Brandi Love (lahir 29 Maret 1973) adalah nama panggung dari model dewasa dan aktris porno Amerika Serikat. Dia dikenal karena karyanya di kategori MILF dan Hot Wife. Kehidup…

2001 TV series or program The Pretender 2001Genre Action Drama Written by Steven Long Mitchell Craig W. Van Sickle Directed byFrederick King KellerStarring Michael T. Weiss Andrea Parker Patrick Bauchau Jon Gries Richard Marcus Jamie Denton Harve Presnell Music byVelton Ray BunchProductionExecutive producers Steven Long Mitchell Craig W. Van Sickle Frederick King Keller ProducerMichael J. MaschioRunning time96 minutesProduction companies Imagiquest Entertainment NBC Studios 20th Century Fox Tele…

Purshotam LalLahir1954 (umur 69–70)KebangsaanIndiaPekerjaanKardiologis Purshotam Lal (kelahiran 1954)[1] adalah seorang kardiologis asal India dan ketua dan direktur Interventional Cardiology of the Metro Group of Hospitals. Ia dianugerahi Padma Vibhushan (2009),[2] Padma Bhushan, dan Padma Shree. Referensi ^ Express Healthcare - creator of affordable healthcare ^ Punjab CM felicitate Dr.Purshotam Lal on being honoured with Padma Vibhushan. Punjab Newsline. 16 April 20…

العلاقات البحرينية البليزية البحرين بليز   البحرين   بليز تعديل مصدري - تعديل   العلاقات البحرينية البليزية هي العلاقات الثنائية التي تجمع بين البحرين وبليز.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة البحري…

2012 2022 Élections législatives de 2017 dans les Hautes-Pyrénées 2 sièges de députés à l'Assemblée nationale 11 et 18 juin 2017 Type d’élection Élections législatives Campagne 22 mai au 10 juin12 juin au 16 juin Débat(s) 1re circonscription : samedi 3 juin sur France 3 Midi-Pyrénées[1]mardi 13 juin sur HPyTv en partenariat avec La Dépêche du Midi, La Nouvelle République des Pyrénées, la radio 100 % et Pic FM[2] Corps électoral et résultats Population 227&#…

Election in Florida Main article: 1928 United States presidential election 1928 United States presidential election in Florida ← 1924 November 6, 1928 1932 →   Nominee Herbert Hoover Al Smith Party Republican Democratic Home state California New York Running mate Charles Curtis Joseph Taylor Robinson Electoral vote 6 0 Popular vote 144,168 101,764 Percentage 56.83% 40.12% County Results Hoover   40–50%   50–60%   60…

Pulau PaskahRapa NuiIsla de Pascua Bendera Lambang Ibu kotaHanga RoaBahasa resmiSpanyol, Rapa Nui [1]Kelompok etnik (2002)Rapanui 60%, Eropa atau mestizo 39%, Amerindian 1%DemonimRapa Nui atau PascuensePemerintahanTeritori khusus Chili• Gubernur Laura Alarcón Rapu• Wali Kota Pedro Edmunds Paoa Aneksasi ke Chili• Perjanjian ditandatangani 9 September 1888 Luas - Total163,6 km2Populasi - Perkiraan 20094,781[2] - Sen…

Collection of illustrated, pocket-sized books on a variety of subjects New Horizons (book series) redirects here. Not to be confused with New Horizons (book) or New Horizons. Découvertes GallimardFour titles from the collection, first row from left to right — Les feux de la Terre : Histoires de volcans, L'Afrique des explorateurs : Vers les sources du Nil, Tous les jardins du monde and Figures de l'héraldique; and their English editions published in the corresponding American and B…

Kembali kehalaman sebelumnya