Share to: share facebook share twitter share wa share telegram print page

Axiom schema of specification

In many popular versions of axiomatic set theory, the axiom schema of specification,[1] also known as the axiom schema of separation (Aussonderung Axiom),[2] subset axiom[3] or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set.

Some mathematicians call it the axiom schema of comprehension, although others use that term for unrestricted comprehension, discussed below.

Because restricting comprehension avoided Russell's paradox, several mathematicians including Zermelo, Fraenkel, and Gödel considered it the most important axiom of set theory.[4]

Statement

One instance of the schema is included for each formula in the language of set theory with as a free variable. So does not occur free in .[3][2][5] In the formal language of set theory, the axiom schema is:

[3][1][5]

or in words:

Let be a formula. For every set there exists a set that consists of all the elements such that holds.[3]

Note that there is one axiom for every such predicate ; thus, this is an axiom schema.[3][1]

To understand this axiom schema, note that the set must be a subset of A. Thus, what the axiom schema is really saying is that, given a set and a predicate , we can find a subset of A whose members are precisely the members of A that satisfy . By the axiom of extensionality this set is unique. We usually denote this set using set-builder notation as . Thus the essence of the axiom is:

Every subclass of a set that is defined by a predicate is itself a set.

The preceding form of separation was introduced in 1930 by Thoralf Skolem as a refinement of a previous, non-first-order[6] form by Zermelo.[7] The axiom schema of specification is characteristic of systems of axiomatic set theory related to the usual set theory ZFC, but does not usually appear in radically different systems of alternative set theory. For example, New Foundations and positive set theory use different restrictions of the axiom of comprehension of naive set theory. The Alternative Set Theory of Vopenka makes a specific point of allowing proper subclasses of sets, called semisets. Even in systems related to ZFC, this scheme is sometimes restricted to formulas with bounded quantifiers, as in Kripke–Platek set theory with urelements.

Relation to the axiom schema of replacement

The axiom schema of specification is implied by the axiom schema of replacement together with the axiom of empty set.[8][a]

The axiom schema of replacement says that, if a function is definable by a formula , then for any set , there exists a set :

.[8]

To derive the axiom schema of specification, let be a formula and a set, and define the function such that if is true and if is false, where such that is true. Then the set guaranteed by the axiom schema of replacement is precisely the set required in the axiom schema of specification. If does not exist, then in the axiom schema of specification is the empty set, whose existence (i.e., the axiom of empty set) is then needed.[8]

For this reason, the axiom schema of specification is left out of some axiomatizations of ZF (Zermelo-Frankel) set theory,[9] although some authors, despite the redundancy, include both.[10] Regardless, the axiom schema of specification is notable because it was in Zermelo's original 1908 list of axioms, before Fraenkel invented the axiom of replacement in 1922.[9] Additionally, if one takes ZFC set theory (i.e., ZF with the axiom of choice), removes the axiom of replacement and the axiom of collection, but keeps the axiom schema of specification, one gets the weaker system of axioms called ZC (i.e., Zermelo's axioms, plus the axiom of choice).[11]

Unrestricted comprehension

The axiom schema of unrestricted comprehension reads:

that is:

There exists a set B whose members are precisely those objects that satisfy the predicate φ.

This set B is again unique, and is usually denoted as {x : φ(x, w1, ..., wb)}.

This axiom schema was tacitly used in the early days of naive set theory, before a strict axiomatization was adopted. However, it was later discovered to lead directly to Russell's paradox, by taking φ(x) to be ¬(x ∈ x) (i.e., the property that set x is not a member of itself). Therefore, no useful axiomatization of set theory can use unrestricted comprehension. Passing from classical logic to intuitionistic logic does not help, as the proof of Russell's paradox is intuitionistically valid.

Accepting only the axiom schema of specification was the beginning of axiomatic set theory. Most of the other Zermelo–Fraenkel axioms (but not the axiom of extensionality, the axiom of regularity, or the axiom of choice) then became necessary to make up for some of what was lost by changing the axiom schema of comprehension to the axiom schema of specification – each of these axioms states that a certain set exists, and defines that set by giving a predicate for its members to satisfy, i.e. it is a special case of the axiom schema of comprehension.

It is also possible to prevent the schema from being inconsistent by restricting which formulae it can be applied to, such as only stratified formulae in New Foundations (see below) or only positive formulae (formulae with only conjunction, disjunction, quantification and atomic formulae) in positive set theory. Positive formulae, however, typically are unable to express certain things that most theories can; for instance, there is no complement or relative complement in positive set theory.

In NBG class theory

In von Neumann–Bernays–Gödel set theory, a distinction is made between sets and classes. A class C is a set if and only if it belongs to some class E. In this theory, there is a theorem schema that reads

that is,

There is a class D such that any class C is a member of D if and only if C is a set that satisfies P.

provided that the quantifiers in the predicate P are restricted to sets.

This theorem schema is itself a restricted form of comprehension, which avoids Russell's paradox because of the requirement that C be a set. Then specification for sets themselves can be written as a single axiom

that is,

Given any class D and any set A, there is a set B whose members are precisely those classes that are members of both A and D.

or even more simply

The intersection of a class D and a set A is itself a set B.

In this axiom, the predicate P is replaced by the class D, which can be quantified over. Another simpler axiom which achieves the same effect is

that is,

A subclass of a set is a set.

In higher-order settings

In a typed language where we can quantify over predicates, the axiom schema of specification becomes a simple axiom. This is much the same trick as was used in the NBG axioms of the previous section, where the predicate was replaced by a class that was then quantified over.

In second-order logic and higher-order logic with higher-order semantics, the axiom of specification is a logical validity and does not need to be explicitly included in a theory.

In Quine's New Foundations

In the New Foundations approach to set theory pioneered by W. V. O. Quine, the axiom of comprehension for a given predicate takes the unrestricted form, but the predicates that may be used in the schema are themselves restricted. The predicate (C is not in C) is forbidden, because the same symbol C appears on both sides of the membership symbol (and so at different "relative types"); thus, Russell's paradox is avoided. However, by taking P(C) to be (C = C), which is allowed, we can form a set of all sets. For details, see stratification.

References

  1. ^ a b c "AxiomaticSetTheory". www.cs.yale.edu. Axiom Schema of Specification. Retrieved 2024-06-08.
  2. ^ a b c Suppes, Patrick (1972-01-01). Axiomatic Set Theory. Courier Corporation. pp. 6, 19, 21, 237. ISBN 978-0-486-61630-8.
  3. ^ a b c d e Cunningham, Daniel W. (2016). Set theory: a first course. Cambridge mathematical textbooks. New York, NY: Cambridge University Press. pp. 22, 24–25, 29. ISBN 978-1-107-12032-7.
  4. ^ Heinz-Dieter Ebbinghaus (2007). Ernst Zermelo: An Approach to His Life and Work. Springer Science & Business Media. p. 88. ISBN 978-3-540-49553-6.
  5. ^ a b DeVidi, David; Hallett, Michael; Clark, Peter (2011-03-23). Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell. Springer Science & Business Media. p. 206. ISBN 978-94-007-0214-1.
  6. ^ F. R. Drake, Set Theory: An Introduction to Large Cardinals (1974), pp.12--13. ISBN 0 444 10535 2.
  7. ^ W. V. O. Quine, Mathematical Logic (1981), p.164. Harvard University Press, 0-674-55451-5
  8. ^ a b c Toth, Gabor (2021-09-23). Elements of Mathematics: A Problem-Centered Approach to History and Foundations. Springer Nature. p. 32. ISBN 978-3-030-75051-0.
  9. ^ a b Bajnok, Béla (2020-10-27). An Invitation to Abstract Mathematics. Springer Nature. p. 138. ISBN 978-3-030-56174-1.
  10. ^ Vaught, Robert L. (2001-08-28). Set Theory: An Introduction. Springer Science & Business Media. p. 67. ISBN 978-0-8176-4256-3.
  11. ^ Kanovei, Vladimir; Reeken, Michael (2013-03-09). Nonstandard Analysis, Axiomatically. Springer Science & Business Media. p. 21. ISBN 978-3-662-08998-9.

Further reading

Notes

  1. ^ Suppes,[2] cited earlier, derived it from the axiom schema of replacement alone (p. 237), but that's because he began his formulation of set theory by including the empty set as part of the definition of a set: his Definition 1, on page 19, states that .
Read more information:

BESIX Group S.A.JenisSociété AnonymeIndustriKonstruksiDidirikan1909; 115 tahun lalu (1909)KantorpusatBrussels, BelgiaWilayah operasiSeluruh duniaTokohkunciRik Vandenberghe (CEO), Johan Beerlandt (Chairman)JasaKonstruksi, Pengembangan Lahan Yasan, Konsesi & AsetPendapatan €3,33 milyar (2019)PemilikOrascom Construction (50%), Masyarakat Belgia (50%)Karyawan14.000 (2017)Situs webwww.besix.com BESIX Group adalah sebuah perusahaan konstruksi yang berkantor pusat di Brussels,[1] d…

Katedral ZacatecasKatedral Basilika Bunda Maria Diangkat ke SurgaSpanyol: Catedral Basílica de la Asunción de María de Zacatecascode: es is deprecated Katedral ZacatecasLokasiZacatecasNegaraMeksikoDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifAdministrasiKeuskupanKeuskupan Zacatecas Katedral Zacatecas, yang bernama lengkap Katedral Basilika Bunda Maria Diangkat ke Surga (Spanyol: Catedral Basílica de la Asunción de María de Zacatecascode: es is deprecated ) ada…

John Jay Gubernur New York KeduaMasa jabatan1 Juli 1795 – 30 Juni 1801WakilStephen Van Rensselaer PendahuluGeorge ClintonPenggantiGeorge ClintonKetua Mahkamah Agung Amerika Serikat PertamaMasa jabatan19 Oktober 1789 – 29 Juni 1795Ditunjuk olehGeorge Washington PendahuluJabatan didirikanPenggantiJohn RutledgeSekretaris Urusan Luar Negeri Amerika Serikat KeduaMasa jabatan7 Mei 1784 – 22 Maret 1790Ditunjuk olehKongres Konfederasi PendahuluRobert LivingstonPenggantiT…

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 此…

SungaiambangKelurahanNegara IndonesiaProvinsiRiauKotaPekanbaruKecamatanRumbai TimurKodepos28292Kode Kemendagri14.71.15.1003 Kode BPS1471081007 Luas29.78 km² (2021)Jumlah penduduk1370 Jiwa (2021)Kepadatan... jiwa/km² Sungaiambang adalah salah satu kelurahan di Kecamatan Rumbai Timur, Kota Pekanbaru, Provinsi Riau, Indonesia. Kelurahan ini dibentuk dari wilayah Kelurahan Lembah Damai dalam pemekaran wilayah di Kota Pekanbaru tahun 2016.[1] Menurut data dari Kelurahan Sungaiambang, t…

العلاقات البرتغالية الليختنشتانية البرتغال ليختنشتاين   البرتغال   ليختنشتاين تعديل مصدري - تعديل   العلاقات البرتغالية الليختنشتانية هي العلاقات الثنائية التي تجمع بين البرتغال وليختنشتاين.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة وم…

Kijing Kijing air tawar Klasifikasi ilmiah Kerajaan: Animalia Filum: Mollusca Kelas: Bivalvia Subkelas: Palaeoheterodonta Ordo: Unionida Superfamili: Unionoidea Famili: Unionidae Subfamili: Gonideinae Tribus: Pseudodontini Subtribus: Pilsbryoconchina Genus: Pilsbryoconcha Spesies: Pilsbryoconcha exilisI.Lea, 1838 Kijing atau Remis adalah nama sejenis kerang yang hidup di sungai. Di seputaran danau Sentarum, Kapuas Hulu, dinamai kedungkang. Kijing sangat suka mengendap di dasar sungai yang berpas…

فورهيسفيل   الإحداثيات 42°38′59″N 73°55′45″W / 42.649722222222°N 73.929166666667°W / 42.649722222222; -73.929166666667  [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة ألباني  خصائص جغرافية  المساحة 5.551827 كيلومتر مربع5.551723 كيلومتر مربع (1 أبريل 2010)  ارتفاع 103 …

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Dory Funk Jr.Funk pada tahun 1973Nama lahirDorrance Earnest FunkLahir3 Februari 1941 (umur 83)[1][2][3]Hammond, Indiana,…

La population mondiale en juin 2014 est d'environ 7,2 milliards d'individus[1]. Une décroissance démographique, un déclin démographique, ou, plus anciennement, une dépopulation, est, pour une zone ou un pays donné, une situation dans laquelle le nombre d’habitants diminue. Les causes peuvent être un taux de mortalité supérieur au taux de natalité, ou des flux d’émigration nets supérieurs à l’accroissement naturel. Ces flux migratoires peuvent être induits par des guerres, des…

Volcanic island in the Tyrrhenian Sea For other uses, see Ischia (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ischia – news · newspapers · books · scholar · JSTOR (January 2018) (Learn how and when to remove this template message) IschiaView of Ischia from ProcidaHighest pointElevation…

Attorney General of New HampshireIncumbentJohn Formellasince April 22, 2021New Hampshire Department of JusticeTypeAttorney GeneralAppointerGovernor of New Hampshirewith approval of the Governor's CouncilTerm length4 yearsConstituting instrumentPart II, Article 46 of the Constitution of New HampshireFormation1892First holderEdwin G. EastmanSalary$141,390 (2022)Websitedoj.nh.gov Attorney general for the U.S. state of New Hampshire The Attorney General of New Hampshire is a constitutional offi…

Ini adalah nama Batak Pakpak, marganya adalah Solin.Mutsyuhito Solin Wakil Bupati Pakpak Bharat ke-3PetahanaMulai menjabat 26 Februari 2021PresidenJoko WidodoGubernurEdy Rahmayadi PendahuluMaju Ilyas PadangPenggantiPetahanaBupatiFranc Bernhard Tumanggor Informasi pribadiLahir6 Oktober 1958 (umur 65)Sidikalang, Sumatera UtaraKebangsaanIndonesiaSuami/istriProf. Dr. Hj. Sri Minda Murni, M.S.Anak1. Syafiq Anshori M. Solin, M.Hum 2. Nida Wafiqah M. Solin, M.Si 3. Thareq Muhammad M. Solin…

Kejuaraan Eropa U-21 UEFA 1998Campionatul European de Fotbal sub 21 UEFA 1998Informasi turnamenTuan rumah RumaniaJadwalpenyelenggaraan23–31 MeiJumlahtim peserta8 (dari 1 konfederasi)Tempatpenyelenggaraan3 (di 1 kota)Hasil turnamenJuara Spanyol (gelar ke-2)Tempat kedua YunaniTempat ketiga NorwegiaTempat keempat BelandaStatistik turnamenJumlahpertandingan12Jumlah gol22 (1,83 per pertandingan)Pemain terbaik Francesc ArnauPencetak golterbanyak Steffen Iverse…

Romanian footballer and manager Coloman Braun-Bogdan Personal informationDate of birth (1905-10-13)13 October 1905Place of birth Arad, Austria-HungaryDate of death 15 March 1983(1983-03-15) (aged 77)Position(s) MidfielderSenior career*Years Team Apps (Gls)1920–1932 AMEF Arad 1932–1934 Racing Club Calais 1934–1935 Juventus București 12 (0)1936–1938 Juventus București 30 (0)Total 42 (0)Managerial career1936–1937 Sportul Studențesc București1937–1938 Juventus București1940 Juv…

2002 2012 Élections législatives de 2007 dans la Drôme 4 sièges de députés à l'Assemblée nationale 10 et 17 juin 2007 Corps électoral et résultats Inscrits 339 250 Votants au 1er tour 208 447   61,44 %  5,3 Votes exprimés au 1er tour 205 216 Votants au 2d tour 209 499   61,75 % Votes exprimés au 2d tour 202 626 Majorité présidentielle Liste Union pour un mouvement populaireDivers droite (Maj. prés.)Divers droiteMouvement pour l…

Primeira Divisão 1962-1963 Competizione Primeira Divisão Sport Calcio Edizione 25ª Organizzatore FPF Date dal 1962al 1963 Luogo  Portogallo Partecipanti 14 Cronologia della competizione 1961-62 1963-64 Manuale L'edizione 1962-63 della Primeira Divisão vide la vittoria finale del Benfica. Capocannoniere del torneo fu José Augusto Torres (Benfica), con 26 reti. Indice 1 Classifica finale 1.1 Verdetti 1.2 Record 2 Risultati 3 Voci correlate 4 Collegamenti esterni Classifica finale…

Vaishnava Hindu text Avyakta UpanishadThere was nothing, then appeared light, then universe states Avyakta UpanishadDevanagariअव्यक्तोपनिषत्IASTAvyaktaTitle meansNon-manifest, universal SpiritDateparts before 7th century CE[1]TypeVaishnavismLinked VedaSama VedaChapters7Verses21[1]PhilosophySamkhya, Yoga, Vedanta Part of a series onVaishnavism Supreme deity Vishnu / Krishna / Rama Important deities Dashavatara Matsya Kurma Varaha Narasimha Vamana Parasu…

Into the FirePromotional film poster for Into the Fire.SutradaraMichael PhelanProduserDavid CrockettMichael PhelanBryan ThomasLisa YeskoDitulis olehMichael PhelanPemeranSean Patrick FlaneryMelina KanakaredesJoBeth WilliamsPablo SchreiberPenata musikMatt AnthonyStephen O'ReillySinematograferChris NoorPenyuntingShawna CallahanDistributorSilent Thunder EntertainmentTanggal rilis16 Februari 2007 (Argentina)BahasaInggrisIMDbInformasi di IMDb Into the Fire adalah salah satu film Amerika Serikat …

Light rail station in Aurora, Colorado 2nd Avenue & Abilene R 2nd Avenue & Abilene station platform in February 2017General informationOther names2nd Ave•AbileneLocation14051 East Ellsworth AvenueAurora, ColoradoCoordinates39°43′10.0″N 104°49′32.4″W / 39.719444°N 104.825667°W / 39.719444; -104.825667Owned byRegional Transportation DistrictLine(s)I-225 Corridor[1]Platforms2 side platformsTracks2Connections RTD Bus: 6Construction…

Kembali kehalaman sebelumnya