Share to: share facebook share twitter share wa share telegram print page

Categorical theory

In mathematical logic, a theory is categorical if it has exactly one model (up to isomorphism).[a] Such a theory can be viewed as defining its model, uniquely characterizing the model's structure.

In first-order logic, only theories with a finite model can be categorical. Higher-order logic contains categorical theories with an infinite model. For example, the second-order Peano axioms are categorical, having a unique model whose domain is the set of natural numbers

In model theory, the notion of a categorical theory is refined with respect to cardinality. A theory is κ-categorical (or categorical in κ) if it has exactly one model of cardinality κ up to isomorphism. Morley's categoricity theorem is a theorem of Michael D. Morley (1965) stating that if a first-order theory in a countable language is categorical in some uncountable cardinality, then it is categorical in all uncountable cardinalities.

Saharon Shelah (1974) extended Morley's theorem to uncountable languages: if the language has cardinality κ and a theory is categorical in some uncountable cardinal greater than or equal to κ then it is categorical in all cardinalities greater than κ.

History and motivation

Oswald Veblen in 1904 defined a theory to be categorical if all of its models are isomorphic. It follows from the definition above and the Löwenheim–Skolem theorem that any first-order theory with a model of infinite cardinality cannot be categorical. One is then immediately led to the more subtle notion of κ-categoricity, which asks: for which cardinals κ is there exactly one model of cardinality κ of the given theory T up to isomorphism? This is a deep question and significant progress was only made in 1954 when Jerzy Łoś noticed that, at least for complete theories T over countable languages with at least one infinite model, he could only find three ways for T to be κ-categorical at some κ:

  • T is totally categorical, i.e. T is κ-categorical for all infinite cardinals κ.
  • T is uncountably categorical, i.e. T is κ-categorical if and only if κ is an uncountable cardinal.
  • T is countably categorical, i.e. T is κ-categorical if and only if κ is a countable cardinal.

In other words, he observed that, in all the cases he could think of, κ-categoricity at any one uncountable cardinal implied κ-categoricity at all other uncountable cardinals. This observation spurred a great amount of research into the 1960s, eventually culminating in Michael Morley's famous result that these are in fact the only possibilities. The theory was subsequently extended and refined by Saharon Shelah in the 1970s and beyond, leading to stability theory and Shelah's more general programme of classification theory.

Examples

There are not many natural examples of theories that are categorical in some uncountable cardinal. The known examples include:

  • Pure identity theory (with no functions, constants, predicates other than "=", or axioms).
  • The classic example is the theory of algebraically closed fields of a given characteristic. Categoricity does not say that all algebraically closed fields of characteristic 0 as large as the complex numbers C are the same as C; it only asserts that they are isomorphic as fields to C. It follows that although the completed p-adic closures Cp are all isomorphic as fields to C, they may (and in fact do) have completely different topological and analytic properties. The theory of algebraically closed fields of a given characteristic is not categorical in ω (the countable infinite cardinal); there are models of transcendence degree 0, 1, 2, ..., ω.
  • Vector spaces over a given countable field. This includes abelian groups of given prime exponent (essentially the same as vector spaces over a finite field) and divisible torsion-free abelian groups (essentially the same as vector spaces over the rationals).
  • The theory of the set of natural numbers with a successor function.

There are also examples of theories that are categorical in ω but not categorical in uncountable cardinals. The simplest example is the theory of an equivalence relation with exactly two equivalence classes, both of which are infinite. Another example is the theory of dense linear orders with no endpoints; Cantor proved that any such countable linear order is isomorphic to the rational numbers: see Cantor's isomorphism theorem.

Properties

Every categorical theory is complete.[1] However, the converse does not hold.[2]

Any theory T categorical in some infinite cardinal κ is very close to being complete. More precisely, the Łoś–Vaught test states that if a satisfiable theory has no finite models and is categorical in some infinite cardinal κ at least equal to the cardinality of its language, then the theory is complete. The reason is that all infinite models are first-order equivalent to some model of cardinal κ by the Löwenheim–Skolem theorem, and so are all equivalent as the theory is categorical in κ. Therefore, the theory is complete as all models are equivalent. The assumption that the theory have no finite models is necessary.[3]

See also

Notes

  1. ^ Some authors define a theory to be categorical if all of its models are isomorphic. This definition makes the inconsistent theory categorical, since it has no models and therefore vacuously meets the criterion.
  1. ^ Monk 1976, p. 349.
  2. ^ Mummert, Carl (2014-09-16). "Difference between completeness and categoricity".
  3. ^ Marker (2002) p. 42

References

Read more information:

CNADiluncurkan1 Maret 1999; 25 tahun lalu (1999-03-01)JaringanMediacorpSloganUnderstand AsiaNegaraSingapuraBahasaInggrisKantor pusatMediacorp Campus, SingapuraTelevisi InternetCNA Official (Internasional)Watch TVMediaCorp (Singapura)Toggle.SG CNA (singkatan nama sebelumnya, Channel NewsAsia)[1] adalah stasiun televisi berita yang berbasis di Singapura. Perusahaan ini didirikan pada tanggal 1 Maret 1999. Saluran ini menggunakan satelit Hot Bird. Di negara Malaysia, CNA dapat diperole…

Cabiri beralih ke halaman ini. Untuk kegunaan lain, lihat Cabiri (disambiguasi). Agamemnon, Talthybius dan Epeius, relief dari Samotrakia, sekitar 560 SM, Louvre Dalam mitologi Yunani, Cabeiri atau Cabiri /kəbaɪraɪ/ (bahasa Yunani Kuno: Κάβειροι, Kábeiroi), juga ditransliterasikan menjadi Kabiri /kəˈbɪəriː/,[1] adalah sekelompok dewa-dewi khthonik misterius. Mereka disembah dalam kultus misteri yang sangat berkaitan dengan Hephaestus, yang terpusat di utara kepulauan…

Koordinat: 39°54′35″N 116°27′20″E / 39.909819°N 116.455572°E / 39.909819; 116.455572 Guomao/Dabeiyao, 2009. Kawasan Guomao/Dabeiyao, Agustus 2004. Kawasan Guomao dipenuhi oleh banyak gedung pencakar langit. Guomao (Hanzi sederhana: 国贸; Hanzi tradisional: 國貿; Pinyin: guómào) merupakan sebuah kawasan di CBD Beijing, berbatasan dengan persimpangan Adimarga Luar Jianguomen dan Jalan lingkar ke-3. World Trade Center Tiongkok berlokasi di kawas…

Foto Ba Jin, sang novelis Jia Jia (家) adalah novel karya penulis kontemporer Cina, Ba Jin.[1] Dipublikasi pada tahun 1931 dan mendapat respon yang baik dari pembaca.[1] Judul novel ini sendiri berarti keluarga. Jia adalah bagian dari Trilogi Guncangan (激流三部曲)yang terdiri dari Jia, Chun dan Qiu.[1] Orang tuanya meninggal saat Ba Jin masih sangat muda dan perwaliannya berpindah ke kakeknya yang otoriter.[2][3] Bagian kehidupan inilah yang men…

Lawrence BeesleyLawrence Beesley (paling belakang) di ruang senam TitanicLahir(1877-12-31)31 Desember 1877Wirksworth, Derbyshire, InggrisMeninggal14 Februari 1967(1967-02-14) (umur 89)Lincoln, Lincolnshire, InggrisPekerjaanguru, jurnalis, penulis Lawrence Beesley (31 Desember 1877 – 14 Februari 1967) adalah seorang guru, jurnalis, dan juga penulis berkebangsaan Inggris yang merupakan korban selamat dari tenggelamnya RMS Titanic. Pendidikan Beesley menempuh pendidikannya di Derby Scho…

Aroutz 1 הערוץ הראשוןCaractéristiquesCréation 2 mai 1968Disparition 10 mai 2017Propriétaire Israel Broadcasting AuthorityLangue HébreuPays IsraëlStatut Généraliste nationale publiqueSiège social Israel Broadcasting Authority 161 Jaffa Road JérusalemAncien nom HaTelevizia HaIsraelit (1968-1994)Site web iba.org.ilmodifier - modifier le code - modifier Wikidata Aroutz 1 (en hébreu הערוץ הראשון, HaArouts HaRishon, litt. « La première chaîne » ; en a…

Guru Tegh BahadurLukisan Teg Bahadur dari abad ke-18 Informasi pribadiLahirTyaga Mal1 April 1621 (1621-04)Amritsar, Punjab, Kemaharajaan Mughal (kini India)Meninggal24 November 1675 (umur 54)Delhi, Kemaharajaan Mughal (kini India)AgamaSikhismePasanganMata GujriAnakGuru Gobind SinghOrang tuaGuru Hargobind dan Mata NanakiDikenal sebagai Menjadi martir untuk melindungi kebebasan beragama Pandit Hindu Kashmir[1][2] dan menolak masuk Islam[1][3][4] Pe…

Mohammad Roem Wakil Perdana Menteri Indonesia ke-10Masa jabatan24 Maret 1956 – 9 Januari 1957Menjabat bersama Idham ChalidPresidenSoekarnoPerdana MenteriAli Sastroamidjojo PendahuluDjanu Ismadi Harsono TjokroaminotoPenggantiJohannes Leimena HardiMenteri Luar Negeri Indonesia ke-4Masa jabatan6 September 1950 – 27 April 1951PresidenSoekarnoPerdana MenteriMohammad Natsir PendahuluAgus SalimPenggantiAchmad SoebardjoMenteri Dalam Negeri Indonesia ke-4Masa jab…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Nova Odesa Нова ОдесаKota BenderaNegara Oblast Raion Ukraina Oblast MykolaivRaion Nova OdesaPendirian1776Mendapat hak kota1976Pemerintahan • MayorOleksandr PolyakovLuas • Total20,65 km2 (797 sq mi)Keti…

Untuk perayaan liturgis terkait, lihat Hari Raya Tritunggal Mahakudus. Untuk kegunaan lain, lihat Tritunggal (disambiguasi). Tritunggal Mahakudus, dilukiskan oleh Szymon Czechowicz (1756–1758) Doktrin Kristen atau Kristiani tentang Tritunggal atau Trinitas (kata Latin yang secara harfiah berarti tiga serangkai, dari kata trinus, rangkap tiga)[1] menyatakan bahwa Allah adalah tiga pribadi[2] atau hipostasis[3] yang sehakikat (konsubstansial)—Bapa, Anak/Putra (Yesus Kri…

Department of France For other uses, see Creuse (disambiguation). Department in Nouvelle-Aquitaine, FranceCreuse (Occitan): Cruesa or CrosaDepartmentPrefecture building of the Creuse department, in Guéret FlagCoat of armsLocation of Creuse in FranceCoordinates: 46°07′20″N 1°54′46″E / 46.12222°N 1.91278°E / 46.12222; 1.91278CountryFranceRegionNouvelle-AquitainePrefectureGuéretSubprefecturesAubussonGovernment • President of the Departmental Council…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2017. MIN 3 Banyumas PurwokertoInformasiDidirikan1997JenisMadrasah ibtidaiyah negeriAkreditasiANomor Statistik Sekolah111030222001Nomor Pokok Sekolah Nasional60710395Kepala SekolahSabar Munanto,S.AgRentang kelasI - VIKurikulumK 13Jumlah siswa591StatusNe…

German biologist Rudolf JaenischJaenisch in 2003.Born (1942-04-22) April 22, 1942 (age 81)Wölfelsgrund, Germany (now Międzygórze, Poland)CitizenshipGermanAlma materUniversity of Munich (M.D., 1967)Known for Epigenetic mechanisms of gene regulation Therapeutic cloning Embryonic stem cell research Awards Gruber Prize in Genetics (2001) Robert Koch Prize (2002) Max Delbrück Medal (2006) Massry Prize from the Keck School of Medicine (2008) Wolf Prize in Medicine (2011) National Me…

City in California, United States City in California, United StatesCity of WildomarCityWildomar City Hall FlagLocation in Riverside County and the state of CaliforniaCity of WildomarLocation in the United StatesCoordinates: 33°35′56″N 117°16′48″W / 33.59889°N 117.28000°W / 33.59889; -117.28000Country United StatesState CaliforniaCounty RiversideIncorporatedJuly 1, 2008[1]Government • TypeCouncil-Manager • MayorJoseph M…

Jean-Marie Pfaff Pfaff pada tahun 2007Informasi pribadiTanggal lahir 4 Desember 1953 (umur 70)Tempat lahir Lebbeke, East Flanders, BelgiaTinggi 1,80 mPosisi bermain Penjaga gawangKarier senior*Tahun Tim Tampil (Gol)1972–1982 Beveren 305 (0)1982–1988 Bayern Munich 156 (0)1988–1989 Lierse 23 (0)1989–1990 Trabzonspor 22 (0)Total 506 (0)Tim nasional1976–1987 Belgia 64 (0)Kepelatihan1998–1999 K.V. Oostende * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Jean-Mar…

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مايو 2023) فنسنت فرنانديز (بالفرنسية: Vincent Fernandez)‏  معلومات شخصية الميلاد 31 يناير 1975 (49 سنة)  سن جرمن آن له  [لغا…

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Птиц…

Voce principale: Brescia Calcio. Brescia CalcioStagione 2007-2008Sport calcio Squadra Brescia Allenatore Serse Cosmi All. in seconda Antonio Palazzi Presidente Luigi Corioni Serie B5º posto PlayoffSemifinale Coppa ItaliaPrimo turno Maggiori presenzeCampionato: Zoboli (37)Totale: Zoboli (38) Miglior marcatoreCampionato: Possanzini (16)Totale: Possanzini (17) StadioStadio Mario Rigamonti Maggior numero di spettatori10 264 vs Messina (5ª giornata) Minor numero di spettatori3 103 vs…

Pieds-droits sculptés de la porte du minaret de la Grande Mosquée de Kairouan, en Tunisie. Pieds-droits sculptés de la porte de la cathédrale Notre-Dame d'Anvers. Pied-droit (ou « piédroit »), appelé aussi montant ou jambage, peut désigner : la partie latérale d'une baie, d'une porte, d'une fenêtre, d'un manteau de cheminée ; le mur vertical supportant la naissance d'une voûte, y compris dans des tunnels ; le pilier carré qui porte la naissance d'une arcade…

Antico littore romano che porta il fascio littorio. I littori (dal latino lictores che deriverebbe dal verbo ligare, ovvero legare[1][2]), istituiti secondo la tradizione al tempo di Romolo[3][4], camminavano davanti al rex e lo proteggevano con dei bastoni. Avevano, inoltre, attorcigliate alla vita delle cinghie di cuoio, con le quali legavano tutti quelli che il sovrano avesse ordinato di catturare[3]. Indice 1 Storia 2 Funzioni 3 Numero 4 Littore curiat…

Kembali kehalaman sebelumnya