Share to: share facebook share twitter share wa share telegram print page

Universal quantification

Universal quantification
TypeQuantifier
FieldMathematical logic
Statement is true when is true for all values of .
Symbolic statement

In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", or "for any". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.

It is usually denoted by the turned A (∀) logical operator symbol, which, when used together with a predicate variable, is called a universal quantifier ("x", "∀(x)", or sometimes by "(x)" alone). Universal quantification is distinct from existential quantification ("there exists"), which only asserts that the property or relation holds for at least one member of the domain.

Quantification in general is covered in the article on quantification (logic). The universal quantifier is encoded as U+2200 FOR ALL in Unicode, and as \forall in LaTeX and related formula editors.

Basics

Suppose it is given that

2·0 = 0 + 0, and 2·1 = 1 + 1, and 2·2 = 2 + 2, ..., and 2 · 100 = 100 + 100, and ..., etc.

This would seem to be an infinite logical conjunction because of the repeated use of "and". However, the "etc." cannot be interpreted as a conjunction in formal logic, Instead, the statement must be rephrased:

For all natural numbers n, one has 2·n = n + n.

This is a single statement using universal quantification.

This statement can be said to be more precise than the original one. While the "etc." informally includes natural numbers, and nothing more, this was not rigorously given. In the universal quantification, on the other hand, the natural numbers are mentioned explicitly.

This particular example is true, because any natural number could be substituted for n and the statement "2·n = n + n" would be true. In contrast,

For all natural numbers n, one has 2·n > 2 + n

is false, because if n is substituted with, for instance, 1, the statement "2·1 > 2 + 1" is false. It is immaterial that "2·n > 2 + n" is true for most natural numbers n: even the existence of a single counterexample is enough to prove the universal quantification false.

On the other hand, for all composite numbers n, one has 2·n > 2 + n is true, because none of the counterexamples are composite numbers. This indicates the importance of the domain of discourse, which specifies which values n can take.[note 1] In particular, note that if the domain of discourse is restricted to consist only of those objects that satisfy a certain predicate, then for universal quantification this requires a logical conditional. For example,

For all composite numbers n, one has 2·n > 2 + n

is logically equivalent to

For all natural numbers n, if n is composite, then 2·n > 2 + n.

Here the "if ... then" construction indicates the logical conditional.

Notation

In symbolic logic, the universal quantifier symbol (a turned "A" in a sans-serif font, Unicode U+2200) is used to indicate universal quantification. It was first used in this way by Gerhard Gentzen in 1935, by analogy with Giuseppe Peano's (turned E) notation for existential quantification and the later use of Peano's notation by Bertrand Russell.[1]

For example, if P(n) is the predicate "2·n > 2 + n" and N is the set of natural numbers, then

is the (false) statement

"for all natural numbers n, one has 2·n > 2 + n".

Similarly, if Q(n) is the predicate "n is composite", then

is the (true) statement

"for all natural numbers n, if n is composite, then n > 2 + n".

Several variations in the notation for quantification (which apply to all forms) can be found in the Quantifier article.

Properties

Negation

The negation of a universally quantified function is obtained by changing the universal quantifier into an existential quantifier and negating the quantified formula. That is,

where denotes negation.

For example, if P(x) is the propositional function "x is married", then, for the set X of all living human beings, the universal quantification

Given any living person x, that person is married

is written

This statement is false. Truthfully, it is stated that

It is not the case that, given any living person x, that person is married

or, symbolically:

.

If the function P(x) is not true for every element of X, then there must be at least one element for which the statement is false. That is, the negation of is logically equivalent to "There exists a living person x who is not married", or:

It is erroneous to confuse "all persons are not married" (i.e. "there exists no person who is married") with "not all persons are married" (i.e. "there exists a person who is not married"):

Other connectives

The universal (and existential) quantifier moves unchanged across the logical connectives , , , and , as long as the other operand is not affected;[2] that is:

Conversely, for the logical connectives , , , and , the quantifiers flip:

Rules of inference

A rule of inference is a rule justifying a logical step from hypothesis to conclusion. There are several rules of inference which utilize the universal quantifier.

Universal instantiation concludes that, if the propositional function is known to be universally true, then it must be true for any arbitrary element of the universe of discourse. Symbolically, this is represented as

where c is a completely arbitrary element of the universe of discourse.

Universal generalization concludes the propositional function must be universally true if it is true for any arbitrary element of the universe of discourse. Symbolically, for an arbitrary c,

The element c must be completely arbitrary; else, the logic does not follow: if c is not arbitrary, and is instead a specific element of the universe of discourse, then P(c) only implies an existential quantification of the propositional function.

The empty set

By convention, the formula is always true, regardless of the formula P(x); see vacuous truth.

Universal closure

The universal closure of a formula φ is the formula with no free variables obtained by adding a universal quantifier for every free variable in φ. For example, the universal closure of

is

.

As adjoint

In category theory and the theory of elementary topoi, the universal quantifier can be understood as the right adjoint of a functor between power sets, the inverse image functor of a function between sets; likewise, the existential quantifier is the left adjoint.[3]

For a set , let denote its powerset. For any function between sets and , there is an inverse image functor between powersets, that takes subsets of the codomain of f back to subsets of its domain. The left adjoint of this functor is the existential quantifier and the right adjoint is the universal quantifier .

That is, is a functor that, for each subset , gives the subset given by

those in the image of under . Similarly, the universal quantifier is a functor that, for each subset , gives the subset given by

those whose preimage under is contained in .

The more familiar form of the quantifiers as used in first-order logic is obtained by taking the function f to be the unique function so that is the two-element set holding the values true and false, a subset S is that subset for which the predicate holds, and

which is true if is not empty, and

which is false if S is not X.

The universal and existential quantifiers given above generalize to the presheaf category.

See also

Notes

  1. ^ Further information on using domains of discourse with quantified statements can be found in the Quantification (logic) article.

References

  1. ^ Miller, Jeff. "Earliest Uses of Symbols of Set Theory and Logic". Earliest Uses of Various Mathematical Symbols.
  2. ^ that is, if the variable does not occur free in the formula in the equivalences below
  3. ^ Saunders Mac Lane, Ieke Moerdijk, (1992) Sheaves in Geometry and Logic Springer-Verlag. ISBN 0-387-97710-4 See page 58
  • The dictionary definition of every at Wiktionary

Read other articles:

Karang Mischief Pulau dipersengketakanNama lain: 美濟礁 / 美济礁 Měijì Jiāo (Tionghoa)Panganiban Reef (Inggris Filipina)Bahura ng Panganiban (Filipina)Đá Vành Khăn (Vietnam) Karang Mischief pada 2018, setelah reklamasi lahan RRT besar pada 2014–2016 Geografi [[Berkas: Lokasi pulau-pulau besar di Sansha Legend: Hitam:Sansha (kursi prefektur) Yongxing Pink:Huangyan Hijau:Yongshu Biru:Meiji Ungu:Zhubi Jingga:Huayang Kuning:Nanxun Merah:Chiguo Coklat:Dongmen|framel…

Susuhunan Capit Gunting di Wanaraja Garut. Capit Gunting merupakan nama bangunan rumah khas Sunda. Bentuk bangunan ini sering digunakan pada zaman dahulu. Terkadang sampai saat ini pun sering digunakan. Dalam kebudayaan Sunda, nama bentuk atap rumah disebut sebagai susuhunan. Dalam kebudayaan Sunda lama, Capit Gunting merupakan salah satu nama susuhunan atau bentuk atap di masyarakat Sunda pada zaman dahulu. Atau dalam bahasa lainnya, istilah untuk nama susuhunan ini disebut Undagi. Undagi itu s…

Vergeltungswaffe 2V-2, Aggregat-4, A-4Un missile V2 al museo di PeenemündeDescrizioneImpiegorappresaglia Sistema di guidaradio Impostazione1936 In servizio1944 Ritiro dal servizio1945 Utilizzatore principaleGermania nazista Esemplari4 000 Peso e dimensioniPeso13500 kg Altezza14 m Diametro1,65 m PrestazioniGittata320-360 km Velocità massima5200 km/h EsplosivoTritolo e Nitrato di Ammonio, 800 kg voci di missili presenti su Wikipedia Il missi…

Pour les articles homonymes, voir Vierge et Virgo. Vierge Vue de la constellation. Désignation Nom latin Virgo Génitif Virginis Abréviation Vir Observation (Époque J2000.0) Ascension droite Entre 172,75° et 226,25° Déclinaison Entre -22° et 14° Taille observable 1 294 deg2 (2e) Visibilité Entre 80° N et 80° S Méridien 25 mai, 21h00 Étoiles Brillantes (m≤3,0) 3 (α, γ, ε) À l’œil nu 171 Bayer / Flamsteed 95 Proches (d≤16 al) 2 La plus brillante α Virginis (…

Aikatsu Friends!アイカツフレンズ!(Aikatsu Furenzu!)GenreMusik, Idola PermainanData Carddass Aikatsu Friends!Pengembangh.a.n.d.PenerbitBandaiGenrePermainan kartuPlatformArkadeRilis5 April 2018 MangaPengarangChihiro KomoriPenerbitShogakukanMajalahCiaoDemografiShōjoTerbit3 April 2018 – sekarang Seri animeSutradaraTatsuya IgarashiSkenarioYuuko KakiharaMusikDigz Motion SoundsStudioBN PicturesSaluranasliTV TokyoTayang 5 April 2018 – 28 Maret 2019Episode50 Karya serial Aikatsu! (2012) Aika…

Komando Operasi KhususTentara Nasional IndonesiaKoopssus TNIAktif30 Juli 2019Negara IndonesiaCabang Tentara Nasional IndonesiaTipe unitOperasi militer selain perang (OMSP), operasi pengintaian khusus, pertempuran jarak dekat, sabotase, kontra-intelijen, anti-pemberontakan, anti-teror global, SAR tempur.Jumlah personelRahasiaBagian dariTentara Nasional IndonesiaMotoTri Cakti Adhikari Terpilih, Bersatu, MenangBaret MERAH MARUN Situs webwww.koopssus-tni.mil.idTokohKomandanMayor Jende…

Stasiun Kami-Suwa上諏訪駅Stasiun Kami-Suwa pada Juni 2016Lokasi1 Suwa, Suwa-shi, Nagano-ken 392-0004 JepangKoordinat36°02′47″N 138°06′59″E / 36.0465°N 138.1165°E / 36.0465; 138.1165Ketinggian761.9 meter[1]Operator JR EastJalur■ Jalur Utama ChūōLetak201.9 kilometers from TokyoJumlah peron1 sisi + 1 pulau peronInformasi lainStatusStaff (Midori no Madoguchi)Situs webSitus web resmiSejarahDibuka25 November 1905PenumpangFY20174,367 per hari Lok…

Americanah PengarangChimamanda Ngozi AdichieNegaraNigeriaBahasaInggrisSeriAla Notable Books for AdultsGenreNovel fiksiPenerbitAlfred A. KnopfTanggal terbitMei 2013Jenis mediaCetak (Sampul keras)Halaman496 halamanISBNISBN 978-0-307-96212-6 Americanah adalah sebuah novel tahun 2013 karya penulis Nigeria Chimamanda Ngozi Adichie, yang membuat Adichie memenangkan penghargaan National Book Critics Circle Fiction 2013. Americanah mengisahkan cerita seorang wanita Nigeria muda, Ifemelu, yang …

President of Malawi since 2020 His ExcellencyLazarus ChakweraChakwera in 20236th President of MalawiIncumbentAssumed office 28 June 2020Vice PresidentSaulos ChilimaPreceded byPeter MutharikaMinister of DefenseIncumbentAssumed office 28 June 2020PresidentHimselfLeader of the OppositionIn officeMay 2014 – February 2019Preceded byJohn TemboSucceeded byLobin LoweMember of Parliament for Lilongwe North WestIn officeMay 2014 – May 2019 Personal detailsBornLazarus McCarthy…

For other uses, see Orašac. Village in Federation of Bosnia and Herzegovina, Bosnia and HerzegovinaOrašacVillageOrašacCoordinates: 43°46′04″N 17°30′48″E / 43.7676669°N 17.5132643°E / 43.7676669; 17.5132643CountryBosnia and HerzegovinaEntityFederation of Bosnia and HerzegovinaCantonHerzegovina-NeretvaMunicipalityProzorArea • Total16.69 sq mi (43.23 km2)Population (2013) • Total456 • Density27/sq mi…

Gambar Stanley Kramer Stanley Kramer atau Stanley Earl Kramer adalah seorang produser dan sutradara film Amerika Serikat kelahiran 29 September 1913 di New York, Amerika Serikat dan meninggal pada tanggal 19 Februari 2001 di Woodland Hills, California, Amerika Serikat.[1] Ia menciptakan karya-karya yang tidak konvensional, berkaitan dengan masalah sosial dan tidak terlalu mengikuti arus perfilman Hollywood.[1] Stanley adalah putra tunggal dari Mildred Kramer, seorang sekretaris d…

فريدريك سانديز Frederick Sandys معلومات شخصية اسم الولادة (بالإنجليزية: Antonio Frederic Augustus Sands)‏  الميلاد 1 مايو 1829(1829-05-01)نورتش ، المملكة المتحدة الوفاة 25 يونيو 1904 (75 سنة)لندن ، المملكة المتحدة مكان الدفن مقبرة برومتون  مواطنة أنجليزي الحياة العملية المهنة رسام اللغات الإنجليزية …

Eraldo Monzeglio Monzeglio con la maglia della nazionale italiana Nazionalità  Italia Altezza 172 cm Peso 67 kg Calcio Ruolo Difensore Termine carriera 1939 - giocatore1973 - allenatore Carriera Giovanili 191?-1923 Casale Squadre di club1 1923-1926 Casale26 (1)1926-1935 Bologna252 (4)1935-1939 Roma108 (0) Nazionale 1930-1938 Italia35 (0) Carriera da allenatore 1946-1947 Como1947-1949 Pro Sesto1949-1956 Napoli1956 Simmenthal-Monza1958-1962 Sampdo…

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2021) فاسيلي ميهاي معلومات شخصية الميلاد 29 نوفمبر 1995 (29 سنة)  الطول 1.71 م (5 قدم 7 بوصة) مركز اللعب وسط الجنسية رومانيا  معلومات النادي النادي الحالي CS Tunari&…

Nama ini menggunakan cara penamaan Spanyol: nama keluarga pertama atau paternalnya adalah Santa Cruz dan nama keluarga kedua atau maternalnya adalah Cantero. Roque Santa Cruz Santa Cruz bermain untuk Málaga pada 2014Informasi pribadiNama lengkap Roque Luis Santa Cruz Cantero[1]Tanggal lahir 16 Agustus 1981 (umur 42)Tempat lahir Asunción, ParaguayTinggi 1,91 m (6 ft 3 in)[2]Posisi bermain PenyerangInformasi klubKlub saat ini LibertadNomor 24Karier junior…

Father, I'll Take Care of YouGenreDramaSutradaraLee Dae-youngPemeranKim Jae-wonLee Soo-kyungPark Eun-binLee Tae-hwanNegara asalKorea SelatanBahasa asliKoreaJmlh. episode50ProduksiProduser eksekutifPark Sung-eunProduserAhn Jae-hyunShin Sang-yoonOh Sung-minLokasi produksiKoreaDurasi70 menit Sabtu dan Minggu pukul 21:55 (WSK)Rumah produksiSamhwa NetworksGnG ProductionsDistributorMunhwa Broadcasting CorporationRilis asliJaringanMunhwa Broadcasting CorporationRilis12 November 2016 (2016-11-1…

2004 filmVanity FairTheatrical release posterDirected byMira NairScreenplay by Julian Fellowes Matthew Faulk Mark Skeet Based onVanity Fairby William Makepeace ThackerayProduced byJanette DayStarring Reese Witherspoon Eileen Atkins Jim Broadbent Gabriel Byrne Romola Garai Bob Hoskins Rhys Ifans James Purefoy Jonathan Rhys Meyers CinematographyDeclan QuinnEdited by Allyson C. Johnson Nishikesh Mehra Music byMychael DannaProductioncompanyGranada ProductionsDistributed by Focus Features (United Sta…

Pemilihan umum federal Jerman Barat 19721969197619 November 1972Seluruh 518 kursi di Bundestag 260 diperlukan untuk mayoritasKehadiran pemilih91.1% (suara layak)[1]Kandidat   Partai pertama Partai kedua Partai ketiga   Ketua Willy Brandt Rainer Barzel Walter Scheel Partai SPD CDU/CSU FDP Ketua sejak 1964 1971 (CDU) 1968 Pemilu sebelumnya 237 250 31 Kursi yang dimenangkan 242 234 42 Perubahan kursi 5 16 11 Suara rakyat 17,175,169 16,806,020 3,129,98…

Type of organ pipe Cornopean redirects here. For the former (brass) wind instrument, see Cornet. For the instruments sometimes called reed pipes in British English, see Reed instruments. A schematic of a typical reed pipe. A reed pipe (also referred to as a lingual pipe) is an organ pipe that is sounded by a vibrating brass strip known as a reed. Air under pressure (referred to as wind) is directed towards the reed, which vibrates at a specific pitch. This is in contrast to flue pipes, which con…

Subway line in Tokyo, Japan This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Toei Ōedo Line – news · newspapers · books · scholar · JSTOR (March 2010) (Learn how and when to remove this message) Toei Ōedo LineA Toei 12-600 series train on the Ōedo LineOverviewOther name(s)ENative name大江戸線Owner Toei Su…

Kembali kehalaman sebelumnya