Gramicidin, also called gramicidin D, is a mix of ionophoricantibiotics, gramicidin A, B and C, which make up about 80%, 5%, and 15% of the mix, respectively. Each has 2 isoforms, so the mix has 6 different types of gramicidin molecules. They can be extracted from Brevibacillus brevis soil bacteria. Gramicidins are linear peptides with 15 amino acids.[2] This is in contrast to unrelated gramicidin S, which is a cyclic peptide.
Gramicidins are used in medicinal lozenges for sore throat and in topical medicines to treat infected wounds. Gramicidins are often mixed with other antibiotics like tyrocidine and antiseptics.[4] Gramicidins are also used in eye drops for bacterial eye infections. In drops, they are often mixed with other antibiotics like polymyxin B or neomycin. Multiple antibiotics increase efficiency against various strains of bacteria.[5] Such eye-drops are also used to treat eye infections of animals, like horses.[6]
History
In 1939, René Dubos isolated the substance tyrothricin.[7][8] Later this was shown to be a mix of gramicidin and tyrocidine. These were the first antibiotics to be manufactured commercially.[8] Letter "D" in gramicidin D is short for "Dubos",[9] and was invented to differentiate the mix from gramicidin S.[10]
In 1964, the sequence of gramicidin A was determined by Reinhard Sarges and Bernhad Witkop.[11][12]
In 1971, the dimeric head-to-head structure of gramicidins was proposed by D. W. Urry.[13]
Y is L-tryptophan in gramicidin A, L-phenylalanine in B and L-tyrosine in C. X determines isoform. X is L-valine or L-isoleucine – in natural gramicidin mixes of A, B and C, about 5% of the total gramicidins are isoleucine isoforms.[2]
Gramicidins form helices. The alternating pattern of D- and L-amino acids is important for the formation of these structures. Helices occur most often as head-to-head dimers. 2 gramicidins can also form antiparallel or parallel double helices, especially in organic solvents. Dimers are long enough to span cellular lipid bilayers and thus function as ion channel -type of ionophores.[12]
Gramicidins can be used as topical antibiotic medications in low doses, even though they are potentially lethal for human cells. Bacteria die at lower gramicidin concentrations than human cells.[3] Gramicidins are not used internally, as their significant intake may cause hemolysis and be toxic to the liver, kidney, meninges and olfactory system among other effects.[16]
References
^ abcBudavari S (1996). The Merck index: an encyclopedia of chemicals, drugs, and biologicals (12th ed.). Merck. p. 712. ISBN0911910123. OCLC34552962.
^Sarges R, Bernhard W (1964). "gramicidin A. IV. Primary sequence of valine and isoleucine gramicidin A". Journal of the American Chemical Society. 86 (9): 1862–1863. doi:10.1021/ja01063a049. ISSN0002-7863.