Share to: share facebook share twitter share wa share telegram print page

Grandi's series

In mathematics, the infinite series 1 − 1 + 1 − 1 + ⋯, also written

is sometimes called Grandi's series, after Italian mathematician, philosopher, and priest Guido Grandi, who gave a memorable treatment of the series in 1703. It is a divergent series, meaning that the sequence of partial sums of the series does not converge.

However, though it is divergent, it can be manipulated to yield a number of mathematically interesting results. For example, many summation methods are used in mathematics to assign numerical values even to a divergent series. For example, the Cesàro summation and the Ramanujan summation of this series are both 1/2.

Nonrigorous methods

One obvious method to find the sum of the series

would be to treat it like a telescoping series and perform the subtractions in place:

On the other hand, a similar bracketing procedure leads to the apparently contradictory result

Thus, by applying parentheses to Grandi's series in different ways, one can obtain either 0 or 1 as a "value". This is closely akin to the general problem of conditional convergence, and variations of this idea, called the Eilenberg–Mazur swindle, are sometimes used in knot theory and algebra. By taking the average of these two "values", one can justify that the series converges to 1/2.

Treating Grandi's series as a divergent geometric series and using the same algebraic methods that evaluate convergent geometric series to obtain a third value:

resulting in . The same conclusion results from calculating (from (), subtracting the result from , and solving .[1]

The above manipulations do not consider what the sum of a series rigorously means and how said algebraic methods can be applied to divergent geometric series. Still, to the extent that it is important to be able to bracket series at will, and that it is more important to be able to perform arithmetic with them, one can arrive at two conclusions:

  • The series 1 − 1 + 1 − 1 + ... has no sum.[1][2]
  • ... but its sum should be 1/2.[2]

In fact, both of these statements can be made precise and formally proven, but only using well-defined mathematical concepts that arose in the 19th century. After the late 17th-century introduction of calculus in Europe, but before the advent of modern rigour, the tension between these answers fueled what has been characterized as an "endless" and "violent" dispute between mathematicians.[3]

Relation to the geometric series

For any number in the interval , the sum to infinity of a geometric series can be evaluated via

For any , one thus finds

and so the limit of series evaluations is

However, as mentioned, the series obtained by switching the limits,

is divergent.

In the terms of complex analysis, 1/2 is thus seen to be the value at z = −1 of the analytic continuation of the series , which is only defined on the complex unit disk, |z| < 1.

Early ideas

Divergence

In modern mathematics, the sum of an infinite series is defined to be the limit of the sequence of its partial sums, if it exists. The sequence of partial sums of Grandi's series is 1, 0, 1, 0, ..., which clearly does not approach any number (although it does have two accumulation points at 0 and 1). Therefore, Grandi's series is divergent.

It can be shown that it is not valid to perform many seemingly innocuous operations on a series, such as reordering individual terms, unless the series is absolutely convergent. Otherwise these operations can alter the result of summation.[4] Further, the terms of Grandi's series can be rearranged to have its accumulation points at any interval of two or more consecutive integer numbers, not only 0 or 1. For instance, the series

(in which, after five initial +1 terms, the terms alternate in pairs of +1 and −1 terms – the infinitude of both +1s and −1s allows any finite number of 1s or −1s to be prepended, by Hilbert's paradox of the Grand Hotel) is a permutation of Grandi's series in which each value in the rearranged series corresponds to a value that is at most four positions away from it in the original series; its accumulation points are 3, 4, and 5.

Education

Cognitive impact

Around 1987, Anna Sierpińska introduced Grandi's series to a group of 17-year-old precalculus students at a Warsaw lyceum. She focused on humanities students with the expectation that their mathematical experience would be less significant than that of their peers studying mathematics and physics, so the epistemological obstacles they exhibit would be more representative of the obstacles that may still be present in lyceum students.

Sierpińska initially expected the students to balk at assigning a value to Grandi's series, at which point she could shock them by claiming that 1 − 1 + 1 − 1 + ··· = 1/2 as a result of the geometric series formula. Ideally, by searching for the error in reasoning and by investigating the formula for various common ratios, the students would "notice that there are two kinds of series and an implicit conception of convergence will be born".[5] However, the students showed no shock at being told that 1 − 1 + 1 − 1 + ··· = 1/2 or even that 1 + 2 + 4 + 8 + ⋯ = −1. Sierpińska remarks that a priori, the students' reaction shouldn't be too surprising given that Leibniz and Grandi thought 1/2 to be a plausible result;

"A posteriori, however, the explanation of this lack of shock on the part of the students may be somewhat different. They accepted calmly the absurdity because, after all, 'mathematics is completely abstract and far from reality', and 'with those mathematical transformations you can prove all kinds of nonsense', as one of the boys later said."[5]

The students were ultimately not immune to the question of convergence; Sierpińska succeeded in engaging them in the issue by linking it to decimal expansions the following day. As soon as 0.999... = 1 caught the students by surprise, the rest of her material "went past their ears".[5]

Preconceptions

In another study conducted in Treviso, Italy around the year 2000, third-year and fourth-year Liceo Scientifico pupils (between 16 and 18 years old) were given cards asking the following:

"In 1703, the mathematician Guido Grandi studied the addition: 1 − 1 + 1 − 1 + ... (addends, infinitely many, are always +1 and –1). What is your opinion about it?"

The students had been introduced to the idea of an infinite set, but they had no prior experience with infinite series. They were given ten minutes without books or calculators. The 88 responses were categorized as follows:

(26) the result is 0
(18) the result can be either 0 or 1
(5) the result does not exist
(4) the result is 1/2
(3) the result is 1
(2) the result is infinite
(30) no answer

The researcher, Giorgio Bagni, interviewed several of the students to determine their reasoning. Some 16 of them justified an answer of 0 using logic similar to that of Grandi and Riccati. Others justified 1/2 as being the average of 0 and 1. Bagni notes that their reasoning, while similar to Leibniz's, lacks the probabilistic basis that was so important to 18th-century mathematics. He concludes that the responses are consistent with a link between historical development and individual development, although the cultural context is different.[6]

Prospects

Joel Lehmann describes the process of distinguishing between different sum concepts as building a bridge over a conceptual crevasse: the confusion over divergence that dogged 18th-century mathematics.

"Since series are generally presented without history and separate from applications, the student must wonder not only "What are these things?" but also "Why are we doing this?" The preoccupation with determining convergence but not the sum makes the whole process seem artificial and pointless to many students—and instructors as well."[7]

As a result, many students develop an attitude similar to Euler's:

"... problems that arise naturally (i.e., from nature) do have solutions, so the assumption that things will work out eventually is justified experimentally without the need for existence sorts of proof. Assume everything is okay, and if the arrived-at solution works, you were probably right, or at least right enough. ... so why bother with the details that only show up in homework problems?"[8]

Lehmann recommends meeting this objection with the same example that was advanced against Euler's treatment of Grandi's series by Jean-Charles Callet. Euler had viewed the sum as the evaluation at x = 1 of the geometric series , giving the sum 1/2. However, Callet pointed out that one could instead view Grandi's series as the evaluation at x = 1 of a different series, , giving the sum 2/3. Lehman argues that seeing such a conflicting outcome in intuitive evaluations may motivate the need for rigorous definitions and attention to detail.[8]

Summability

The series 1 − 2 + 3 − 4 + 5 − 6 + 7 − 8 + ... (up to infinity) is also divergent, but some methods may be used to sum it to 1/4. This is the square of the value most summation methods assign to Grandi's series, which is reasonable as it can be viewed as the Cauchy product of two copies of Grandi's series.

See also

Notes

  1. ^ a b Devlin 1994, p. 77
  2. ^ a b Davis 1989, p. 152
  3. ^ Kline 1983, p. 307; Knopp 1990, p. 457
  4. ^ Protter & Morrey 1991
  5. ^ a b c Sierpińska 1987, pp. 371–378
  6. ^ Bagni 2005, pp. 6–8
  7. ^ Lehmann 1995, p. 165
  8. ^ a b Lehmann 1995, p. 176

References

  • Bagni, Giorgio T. (June 2005). "Infinite Series from History to Mathematics Education" (PDF). International Journal for Mathematics Teaching and Learning. Archived from the original (PDF) on 2006-12-29.
  • Davis, Harry F. (May 1989). Fourier Series and Orthogonal Functions. Dover. ISBN 978-0-486-65973-2.
  • Devlin, Keith (1994). Mathematics, the science of patterns: the search for order in life, mind, and the universe. Scientific American Library. ISBN 978-0-7167-6022-1.
  • Kline, Morris (November 1983). "Euler and Infinite Series". Mathematics Magazine. 56 (5): 307–314. CiteSeerX 10.1.1.639.6923. doi:10.2307/2690371. JSTOR 2690371.
  • Knopp, Konrad (1990) [1922]. Theory and Application of Infinite Series. Dover. ISBN 978-0-486-66165-0.
  • Hobson, E. W. (1907). The theory of functions of a real variable and the theory of Fourier's series. Cambridge University Press. section 331. ISBN 978-1-4181-8651-7.
  • Lehmann, Joel (1995). "Converging Concepts of Series: Learning from History". In Swetz, Frank; Fauvel, John; Bekken, Otto; Johansson, Bengt; Katz, Victor (eds.). Learn from the Masters! (PDF). Mathematical Association of America. pp. 161–180.
  • Protter, Murray H.; Morrey, Charles B. Jr. (1991). A First Course in Real Analysis. Undergraduate Texts in Mathematics. Springer. p. 249. ISBN 978-0-387-97437-8.
  • Sierpińska, Anna (November 1987). "Humanities students and epistemological obstacles related to limits". Educational Studies in Mathematics. 18 (4): 371–396. doi:10.1007/BF00240986. JSTOR 3482354. S2CID 144880659.
  • Whittaker, E. T.; Watson, G. N. (1962). A Course of Modern Analysis (4th, reprinted ed.). Cambridge University Press. § 2.1.

Read other articles:

Opera by Igor Stravinsky This article is about the 1914 Igor Stravinsky opera. For the 1982 opera/musical of the same name by Charles Strouse, see Nightingale (musical). For the 2012 La Jolla musical, see The Nightingale (musical). The NightingaleOpera by Igor StravinskySet design for the premiere by Alexandre BenoisDescriptionlyric taleNative titleRussian: СоловейLibrettist the composer Stepan Mitusov Based onThe Nightingaleby Hans Christian AndersenPremiere26 May 1914 (19…

Ida HannasLahirIda Farida Hanas1956Kota Medan, IndonesiaPekerjaanpenyanyiSuami/istriIwan Setiawan (wafat 2015)Irfani Fahmi (m. 2019)AnakSissy PriscilliaJevin JulianVanesha PrescillaKerabatRinni Wulandari (menantu)Rifat Sungkar (menantu)Karier musikGenrepopTahun aktif1980-1985 Ida Farida Hanas merupakan seorang penyanyi berkebangsaan Indonesia pada era 80an. Karier Sejak tahun 1980 hingga 1985, Ida telah menghasilkan tiga album solo dan satu album duet, meski tidak ada albumnya yang benar-benar m…

Erry Biatmoko Informasi pribadiLahir4 November 1953 (umur 70)Tegal, Jawa TengahKebangsaanIndonesiaAlma materAkademi Angkatan Udara (1976)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan UdaraMasa dinas1976 – 2012Pangkat Marsekal Muda TNISatuanKorps Penerbang (Tempur)Sunting kotak info • L • B Marsekal Muda TNI (Purn.) Erry Biatmoko, (lahir 4 November 1953) adalah seorang purnawirawan militer dari TNI Angkatan Udara yang merupakan lulusan Akademi Angkatan Udar…

MencintaimuAlbum studio karya KrisdayantiDirilis1 Januari 2000Direkam1999GenrePopLabelWarner Music IndonesiaProduserKrisdayantiKronologi Krisdayanti Menghitung Hari (1999)Menghitung Hari1999 Mencintaimu (2000) Makin Aku Cinta(2000)Makin Aku Cinta2000 Mencintaimu adalah album studio karya penyanyi pop Krisdayanti. Album ini dirilis pada tahun 2000 oleh Warner Music Indonesia.[1] Berisi 11 buah lagu, album ini melejitkan hit singel Mencintaimu, Yang Kumau, dan Rembulan. Melalui album i…

1831 1837 Élections législatives françaises de 1834 460 députés 21 juin 1834 Type d’élection Élections législatives Corps électoral et résultats Inscrits 171 015 Votants 129 212   75,56 %  0,5 Ministériels – Édouard Mortier Parti de la Résistance DoctrinairesCentre ministérielCentre gauche Voix 89 885 69,57 %  Députés élus 320 Libéraux – Jacques Laffitte Parti du Mouvement Opposition dynastiqueRépublicains V…

Church in Rome, ItalySan Sebastiano al PalatinoSancti Sebastiani in Monte Palatino (in Latin)The churchClick on the map for a fullscreen view41°53′22.84″N 12°29′19.14″E / 41.8896778°N 12.4886500°E / 41.8896778; 12.4886500LocationVia di San Bonaventura, RomeCountryItalyDenominationRoman CatholicTraditionRoman RiteWebsiteOfficial websiteHistoryStatusTitular churchDedicationSaint SebastianArchitectureArchitectural typeChurchStyleBaroqueAdministrationDistrictLazio…

The Walking DeadMusim 3Poster promosiDibintangioleh Andrew Lincoln Sarah Wayne Callies Laurie Holden Norman Reedus Steven Yeun Lauren Cohan Chandler Riggs Danai Gurira Michael Rooker David Morrissey Melissa McBride Scott Wilson Negara asalAmerika SerikatJumlah episode16RilisSaluran asliAMCTanggal tayang14 Oktober 2012 (2012-10-14) –31 Maret 2013 (2013-3-31)Kronologi Musim← SebelumnyaMusim 2 Selanjutnya →Musim 4 Daftar episode The Walking Dead Musim ketiga dari The …

Ini adalah nama Batak Toba, marganya adalah Manurung. Coki Manurung Kepala Kepolisian Daerah BengkuluMasa jabatan18 April 2017 – 22 Januari 2019 PendahuluYovianes MaharPenggantiSupratman Informasi pribadiLahir10 Februari 1964 (umur 60)JakartaAlma materAkademi Kepolisian (1986)Karier militerPihak IndonesiaDinas/cabang Kepolisian Negara Republik IndonesiaMasa dinas1986—2022Pangkat Inspektur Jenderal PolisiNRP64020920SatuanReserseSunting kotak info • L • B …

Stadion Charmilles Informasi stadionNama lengkapStade des CharmillesLokasiLokasiJenewa, SwissKoordinat46°12′33″N 6°07′06″E / 46.2091°N 6.1182°E / 46.2091; 6.1182Koordinat: 46°12′33″N 6°07′06″E / 46.2091°N 6.1182°E / 46.2091; 6.1182KonstruksiDibukaJuni 1930Ditutup2002Data teknisKapasitas9.250 (2002)Rekor kehadiran27.000 (1962)PemakaiServette FCSunting kotak info • L • BBantuan penggunaan templat ini Stadion Char…

Pour les articles homonymes, voir Al-Kazimi. Cet article est une ébauche concernant un homme politique irakien. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Moustafa al-Kazimi(ar) مصطفى الكاظمي Moustafa al-Kazimi en 2021. Fonctions Premier ministre d'Irak 7 mai 2020 – 27 octobre 2022(2 ans, 5 mois et 20 jours) Président Barham SalihAbdel Latif Rachid Gouvernement al-Kazimi Législat…

David Ogden StiersStiers pada bulan Agustus 1977Nama lahirDavid Allen Ogden StiersLahir(1942-10-31)31 Oktober 1942Peoria, Illinois, A.S.Meninggal3 Maret 2018(2018-03-03) (umur 75)Newport, Oregon, A.S.MediaTunggal, televisi, filmKebangsaanAmerika SerikatGenreKomedi observasionalSubjekImpresion, budaya pop David Allen Ogden Stiers (31 Oktober 1942 – 3 Maret 2018) adalah seorang komedian tunggal, aktor, penyanyi, impresionis, artis pengisi suara, dan komedian Amerika yang paling dikenal kare…

1822 battle of the war of Greek independence Battle of PetaPart of the Greek War of IndependenceThe Battle of Petaby Panagiotis ZographosDate16 July 1822 (4 July Julian calendar)LocationPeta, Sanjak of Ioannina, Ottoman Empire (now Arta, Greece)39°10′02″N 21°01′48″E / 39.1672798°N 21.0300179°E / 39.1672798; 21.0300179Result Ottoman victoryBelligerents First Hellenic Republic Ottoman EmpireCommanders and leaders Alexandros MavrokordatosMarkos BotsarisPanagiotis…

Rai 1Diluncurkan3 Januari 1954PemilikGoldTVPangsa pemirsa21.80% (2008, [1])Negara ItaliaSitus webrai.it/rai1 Rai 1 merupakan jaringan televisi umum terbesar Italia. Bagian dari grup RAI, bersama dengan Rai 2, Rai 3, Rai 4, Rai 5 dan Rai News24. Nama ini sebelumnya bernama Rai Uno hingga 18 Mei 2010. Saluran ini mulai mengudara tahun 1954. Direktur Nama Mulai bekerja Berhenti bekerja Mimmo Scarano 1976 1979 Emmanuele Milano 1980 1985 Giuseppe Rossini 1986 1988 Carlo Fuscagni 1989 199…

Palazzo PretorioPalazzo Pretorio visto da piazza Farinata degli UbertiLocalizzazioneStato Italia RegioneToscana LocalitàEmpoli IndirizzoPiazza Farinata degli Uberti Coordinate43°43′09.59″N 10°56′46.1″E / 43.71933°N 10.94614°E43.71933; 10.94614Coordinate: 43°43′09.59″N 10°56′46.1″E / 43.71933°N 10.94614°E43.71933; 10.94614 Informazioni generaliCondizioniIn uso Modifica dati su Wikidata · Manuale Palazzo Pretorio è l'antico palaz…

Lokasi Hersbruck (merah) diNürnberger Land (abu-abu), Bayern. Hersbruck adalah kota yang terletak di distrik Nürnberger Land di Bayern, Jerman. Kota Hersbruck memiliki luas sebesar 22.91 km². Hersbruck pada tahun 2006, memiliki penduduk sebanyak 12.426 jiwa. lbsKota dan kotamadya di Nürnberger Land Alfeld Altdorf bei Nürnberg Burgthann Engelthal Feucht Happurg Hartenstein Henfenfeld Hersbruck Kirchensittenbach Lauf an der Pegnitz Leinburg Neuhaus an der Pegnitz Neunkirchen am Sand Offe…

Austrian R&B and pop singer This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This biography of a living person relies too much on references to primary sources. Please help by adding secondary or tertiary sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately, especially if potentially libelous or harmful.Find sources: Nadin…

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКл…

Enzo Mario Nino Lombardi Sindaco dell'AquilaDurata mandato24 ottobre 1985 –13 gennaio 1992 PredecessoreRomeo Ricciuti SuccessoreMaria Luisa Baldoni Senatore della Repubblica ItalianaLegislaturaXI GruppoparlamentareDemocratico Cristiano e PPI CircoscrizioneXVII - Abruzzo CollegioL'Aquila—Sulmona Dati generaliPartito politicoDC (fino al 1994)PPI (1994)FI (dal 1994) Titolo di studioLaurea in Scienze Economiche e Commerciali ProfessioneDirigente Enzo Mario Nino Lomba…

Building in Berlin–Mitte, GermanyHotel Adlon Kempinski The current Hotel Adlon Kempinski BerlinHotel chainKempinskiGeneral informationLocationBerlin–Mitte, GermanyAddressUnter den Linden 77OpeningOriginal Hotel Adlon - October 24th 1907Current Hotel Adlon Kempinski Berlin - August 23rd 1997Technical detailsFloor count7Design and constructionArchitect(s)Rainer Michael KlotzOther informationNumber of rooms382Number of restaurants4Number of bars5Websitewww.kempinski.com/adlon The Hotel Adlon Ke…

100 Days with Mr. ArrogantNama lainHangul내사랑싸가지 Alih Aksara yang DisempurnakanNae sarang ssagajiMcCune–ReischauerNae sarang ssagaji SutradaraShin Dong-yeopProduserJun Ji-hyunPemeranHa Ji-wonKim JaewonPenata musikJo Byeong-seokSinematograferHwang Cheol-hyeonPenyuntingKo Im-pyoDistributorCinema ServiceTanggal rilis 16 Januari 2004 (2004-01-16) Durasi95 menitNegaraKorea SelatanBahasaKorea 100 Days with Mr. Arrogant (aka My Love Ssagaji) adalah komedi romantis Korea Se…

Kembali kehalaman sebelumnya