Share to: share facebook share twitter share wa share telegram print page

Mean

A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers.[1] There are several kinds of means (or "measures of central tendency") in mathematics, especially in statistics. Each attempts to summarize or typify a given group of data, illustrating the magnitude and sign of the data set. Which of these measures is most illuminating depends on what is being measured, and on context and purpose.[2]

The arithmetic mean, also known as "arithmetic average", is the sum of the values divided by the number of values. The arithmetic mean of a set of numbers x1, x2, ..., xn is typically denoted using an overhead bar, .[note 1] If the numbers are from observing a sample of a larger group, the arithmetic mean is termed the sample mean () to distinguish it from the group mean (or expected value) of the underlying distribution, denoted or .[note 2][3]

Outside probability and statistics, a wide range of other notions of mean are often used in geometry and mathematical analysis; examples are given below.

Types of means

Pythagorean means

In mathematics, the three classical Pythagorean means are the arithmetic mean (AM), the geometric mean (GM), and the harmonic mean (HM). These means were studied with proportions by Pythagoreans and later generations of Greek mathematicians[4] because of their importance in geometry and music.

Arithmetic mean (AM)

The arithmetic mean (or simply mean or average) of a list of numbers, is the sum of all of the numbers divided by their count. Similarly, the mean of a sample , usually denoted by , is the sum of the sampled values divided by the number of items in the sample.

For example, the arithmetic mean of five values: 4, 36, 45, 50, 75 is:

Geometric mean (GM)

The geometric mean is an average that is useful for sets of positive numbers, that are interpreted according to their product (as is the case with rates of growth) and not their sum (as is the case with the arithmetic mean):

[1]

For example, the geometric mean of five values: 4, 36, 45, 50, 75 is:

Harmonic mean (HM)

The harmonic mean is an average which is useful for sets of numbers which are defined in relation to some unit, as in the case of speed (i.e., distance per unit of time):

For example, the harmonic mean of the five values: 4, 36, 45, 50, 75 is

If we have five pumps that can empty a tank of a certain size in respectively 4, 36, 45, 50, and 75 minutes, then the harmonic mean of tells us that these five different pumps working together will pump at the same rate as much as five pumps that can each empty the tank in minutes.

Relationship between AM, GM, and HM

Proof without words of the AM–GM inequality:
PR is the diameter of a circle centered on O; its radius AO is the arithmetic mean of a and b. Using the geometric mean theorem, triangle PGR's altitude GQ is the geometric mean. For any ratio a:b, AO ≥ GQ.

AM, GM, and HM satisfy these inequalities:[citation needed]

Equality holds if all the elements of the given sample are equal.

Statistical location

Comparison of the arithmetic mean, median, and mode of two skewed (log-normal) distributions
Geometric visualization of the mode, median and mean of an arbitrary probability density function[5]

In descriptive statistics, the mean may be confused with the median, mode or mid-range, as any of these may incorrectly be called an "average" (more formally, a measure of central tendency). The mean of a set of observations is the arithmetic average of the values; however, for skewed distributions, the mean is not necessarily the same as the middle value (median), or the most likely value (mode). For example, mean income is typically skewed upwards by a small number of people with very large incomes, so that the majority have an income lower than the mean. By contrast, the median income is the level at which half the population is below and half is above. The mode income is the most likely income and favors the larger number of people with lower incomes. While the median and mode are often more intuitive measures for such skewed data, many skewed distributions are in fact best described by their mean, including the exponential and Poisson distributions.

Mean of a probability distribution

The mean of a probability distribution is the long-run arithmetic average value of a random variable having that distribution. If the random variable is denoted by , then the mean is also known as the expected value of (denoted ). For a discrete probability distribution, the mean is given by , where the sum is taken over all possible values of the random variable and is the probability mass function. For a continuous distribution, the mean is , where is the probability density function.[6] In all cases, including those in which the distribution is neither discrete nor continuous, the mean is the Lebesgue integral of the random variable with respect to its probability measure. The mean need not exist or be finite; for some probability distributions the mean is infinite (+∞ or −∞), while for others the mean is undefined.

Generalized means

Power mean

The generalized mean, also known as the power mean or Hölder mean, is an abstraction of the quadratic, arithmetic, geometric, and harmonic means. It is defined for a set of n positive numbers xi by

[1]

By choosing different values for the parameter m, the following types of means are obtained:

maximum of
quadratic mean
arithmetic mean
geometric mean
harmonic mean
minimum of

f-mean

This can be generalized further as the generalized f-mean

and again a suitable choice of an invertible f will give

power mean,
arithmetic mean,
geometric mean.
harmonic mean,

Weighted arithmetic mean

The weighted arithmetic mean (or weighted average) is used if one wants to combine average values from different sized samples of the same population:

[1]

Where and are the mean and size of sample respectively. In other applications, they represent a measure for the reliability of the influence upon the mean by the respective values.

Truncated mean

Sometimes, a set of numbers might contain outliers (i.e., data values which are much lower or much higher than the others). Often, outliers are erroneous data caused by artifacts. In this case, one can use a truncated mean. It involves discarding given parts of the data at the top or the bottom end, typically an equal amount at each end and then taking the arithmetic mean of the remaining data. The number of values removed is indicated as a percentage of the total number of values.

Interquartile mean

The interquartile mean is a specific example of a truncated mean. It is simply the arithmetic mean after removing the lowest and the highest quarter of values.

assuming the values have been ordered, so is simply a specific example of a weighted mean for a specific set of weights.

Mean of a function

In some circumstances, mathematicians may calculate a mean of an infinite (or even an uncountable) set of values. This can happen when calculating the mean value of a function . Intuitively, a mean of a function can be thought of as calculating the area under a section of a curve, and then dividing by the length of that section. This can be done crudely by counting squares on graph paper, or more precisely by integration. The integration formula is written as:

In this case, care must be taken to make sure that the integral converges. But the mean may be finite even if the function itself tends to infinity at some points.

Mean of angles and cyclical quantities

Angles, times of day, and other cyclical quantities require modular arithmetic to add and otherwise combine numbers. In all these situations, there will not be a unique mean. For example, the times an hour before and after midnight are equidistant to both midnight and noon. It is also possible that no mean exists. Consider a color wheel—there is no mean to the set of all colors. In these situations, you must decide which mean is most useful. You can do this by adjusting the values before averaging, or by using a specialized approach for the mean of circular quantities.

Fréchet mean

The Fréchet mean gives a manner for determining the "center" of a mass distribution on a surface or, more generally, Riemannian manifold. Unlike many other means, the Fréchet mean is defined on a space whose elements cannot necessarily be added together or multiplied by scalars. It is sometimes also known as the Karcher mean (named after Hermann Karcher).

Triangular sets

In geometry, there are thousands of different definitions for the center of a triangle that can all be interpreted as the mean of a triangular set of points in the plane.[7]

Swanson's rule

This is an approximation to the mean for a moderately skewed distribution.[8] It is used in hydrocarbon exploration and is defined as:

where , and are the 10th, 50th and 90th percentiles of the distribution, respectively.

Other means

See also

Notes

  1. ^ Pronounced "x bar".
  2. ^ Greek letter μ, pronounced /'mjuː/.

References

  1. ^ a b c d "Mean | mathematics". Encyclopedia Britannica. Retrieved 2020-08-21.
  2. ^ Why Few Math Students Actually Understand the Meaning of Means (YouTube video). Math The World. 2024-08-27. Retrieved 2024-09-10.
  3. ^ Underhill, L.G.; Bradfield d. (1998) Introstat, Juta and Company Ltd. ISBN 0-7021-3838-X p. 181
  4. ^ Heath, Thomas. History of Ancient Greek Mathematics.
  5. ^ "AP Statistics Review - Density Curves and the Normal Distributions". Archived from the original on 2 April 2015. Retrieved 16 March 2015.
  6. ^ Weisstein, Eric W. "Population Mean". mathworld.wolfram.com. Retrieved 2020-08-21.
  7. ^ Narboux, Julien; Braun, David (2016). "Towards a certified version of the encyclopedia of triangle centers". Mathematics in Computer Science. 10 (1): 57–73. doi:10.1007/s11786-016-0254-4. MR 3483261. under the guidance of Clark Kimberling, an electronic encyclopedia of triangle centers (ETC) has been developed, it contains more than 7000 centers and many properties of these points
  8. ^ Hurst A, Brown GC, Swanson RI (2000) Swanson's 30-40-30 Rule. American Association of Petroleum Geologists Bulletin 84(12) 1883-1891

Read other articles:

Горная пехота Украиныукр. Гірська піхота України Годы существования 1996 — н. в. Страна  Украина Входит в Сухопутные войска Тип горная пехота Функция Боевые действия в горах Знаки отличия Горная пехота Украины (укр. Гірська піхота України) — род войск в составе Сухопут…

العلاقات الأنغولية القيرغيزستانية أنغولا قيرغيزستان   أنغولا   قيرغيزستان تعديل مصدري - تعديل   العلاقات الأنغولية القيرغيزستانية هي العلاقات الثنائية التي تجمع بين أنغولا وقيرغيزستان.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية …

Further information: Evansville, Indiana Evansville, Indiana is the home to two minor league professional sports teams and one amateur sports team. The city is also the home to two NCAA collegiate teams, and nine high schools that participate in the Indiana High School Athletic Association. Evansville is also the host to the annual Hoosier Nationals and Demolition City Roller Derby. Professional teams Club League Sport Venue Established Championships Evansville Otters Frontier League Baseball Bo…

Origin LtdJenisUmum (ASX: ORG)IndustriEnergiDidirikan2000 tetapi sebagian bisnis dimulai pada abad ke-19Kantorpusat Sydney, New South Wales, AustraliaTokohkunciGrant King, MDProdukMinyak, gas dan listrikPendapatan $6.94 miliar AUD (2009, [1])Laba bersih $530 juta dipotong pajak AUD (2009)Karyawan~4000Situs webwww.originenergy.com.au Origin adalah sebuah perusahaan energi Australia yang berpusat di Sydney. Sektor bisnis Origin Energy aktif dalam sejumlah sektor dalam bisnis energi: Eksploras…

Chronologies Groupe d'enfants et d'adolescents, 5 janvier 1972.Données clés 1969 1970 1971  1972  1973 1974 1975Décennies :1940 1950 1960  1970  1980 1990 2000Siècles :XVIIIe XIXe  XXe  XXIe XXIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, République démocrat…

This template does not require a rating on Wikipedia's content assessment scale.It is of interest to multiple WikiProjects. Anthropology This template is within the scope of WikiProject Anthropology, a collaborative effort to improve the coverage of Anthropology on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.AnthropologyWikipedia:WikiProject AnthropologyTemplate:WikiProject AnthropologyAnthropology art…

Disambiguazione – Se stai cercando altri significati, vedi College (disambigua). Questa voce sull'argomento istruzione è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Corpus Christi College, uno dei collegi costituenti dell'Università di Cambridge in Inghilterra. Il termine college (dal latino collegium) è usato soprattutto nei paesi anglofoni per denotare una scuola secondaria con studenti interni o u…

Ular Koros Ular jali Ptyas korros Status konservasiHampir terancamIUCN192131 TaksonomiKerajaanAnimaliaFilumChordataKelasReptiliaOrdoSquamataFamiliColubridaeGenusPtyasSpesiesPtyas korros Schlegel, 1837 lbs Ular Koros (Ptyas korros) adalah spesies ular tikus yang tersebar luas di Asia Tenggara. Nama umumnya dalam bahasa Inggris adalah Chinese ratsnake atau Indo-chinese ratsnake. Morfologi Panjang tubuh ular koros mencapai 2.5 meter. Tubuh bagian atas berwarna abu-abu, perak, atau kecokelatan, seda…

Untuk kegunaan lain, lihat Arab. Sebuah persiapan festival kebudayaan Arab di Moroko. Budaya Arab merupakan kawasan berbudaya Arab meliputi wilayah Jazirah Arabia, Mesir dan Afrika Utara demikian pula dengan Irak yang dahulunya dalam pengaruh budaya Persia dan Syria yang berkebudayaan Byzantium. pada saat ini meliputi wilayah Timur Tengah, Bulan Sabit Subur, Teluk Persia, dan Afrika Utara.[1] Budaya ini memengaruhi budaya-budaya di bagian Asia lainnya—terutama di Asia Selatan, Asia Ten…

1919 treaty Treaty of Neuilly-sur-SeineBulgaria after the Treaty of Neuilly-sur-SeineSigned27 November 1919LocationNeuilly-sur-Seine, FranceConditionRatification by Bulgaria and four Principal Allied Powers.Signatories Bulgaria United States British Empire France Italy Japan Other Allied Powers Greece  Kingdom of Serbs, Croats and Slovenes  Belgium  China  Cuba  Hejaz  Poland  Portugal  Romania  Siam  Czechoslovakia …

Unicameral legislature of the Indian state of Gujarat Gujarat Legislative Assembly15th Gujarat AssemblyState Emblem of GujaratTypeTypeUnicameral of the Gujarat Legislative Assembly Term limits5 yearsHistoryPreceded by15th Gujarat Legislative AssemblyLeadershipSpeakerShankar Chaudhary, BJP since 20 December 2022[3] Deputy SpeakerJethabhai Ahir, BJP since 20 December 2022[4] Leader of the House (Chief Minister)Bhupendrabhai Patel, BJPsince 13 September 2021 Leader of t…

У этого термина существуют и другие значения, см. Чайки (значения). Чайки Доминиканская чайкаЗападная чайкаКалифорнийская чайкаМорская чайка Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:Вторичн…

Ini adalah nama Korea; marganya adalah Dong. TaeyangTaeyang pada Juni 2016LahirDong Young-bae18 Mei 1988 (umur 35)Uijeongbu, Gyeonggi-do, Korea SelatanNama lainSolPekerjaan Penyanyi penulis lagu Suami/istriMin Hyo-rin ​(m. 2018)​Anak1Karier musikGenre Hip hop Pop Korea Dansa R&B Dansa elektronik Instrumen Vokal Piano Gitar Drum Tahun aktif2006–sekarangLabel YG (2006-2022) YGEX (2006-2022) THE BLACK LABEL (2022-sekarang) Artis terkait Big Bang Teddy Pa…

Town and former municipality in Northwestern Region, IcelandBlönduósbærTown and former municipalityHouses in BlönduósBlönduósbærCoordinates: 65°40′N 20°18′W / 65.667°N 20.300°W / 65.667; -20.300CountryIcelandRegionNorthwestern RegionConstituencyNorthwest ConstituencyMunicipalityHúnabyggðEstablished1876Area • Total183 km2 (71 sq mi)Population • Total895 • Density4.73/km2 (12.3/sq mi)Postal code(s)540…

American labor leader Herb SorrellSorrell in 1946BornHerbert Knott Sorrell(1897-04-18)April 18, 1897Deepwater, Missouri[1]DiedMay 7, 1973(1973-05-07) (aged 76)[2]Burbank, California, United StatesNationalityAmericanOccupation(s)Trade union organizer and activist Herbert Knott Sorrell (April 18, 1897 – May 7, 1973) was an American labor leader and Hollywood union organizer.[3] He headed the Conference of Studio Unions (CSU) in the late 1940s, and was the business ma…

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロー…

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府與…

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для плануван…

NGC 4143   الكوكبة السلوقيان[1]  رمز الفهرس NGC 4143 (الفهرس العام الجديد)UGC 7142 (فهرس أوبسالا العام)PGC 38654 (فهرس المجرات الرئيسية)2MASX J12093608+4232031 (Two Micron All-Sky Survey, Extended source catalogue)MCG+07-25-036 (فهرس المجرات الموروفولوجي)Z 215-39 (فهرس المجرات وعناقيد المجرات)UZC J120936.1+423203 (فهرس زفيكي المحدّث)Z 1207…

Ивен, или Рыцарь со львомфр. Yvain ou le Chevalier au Lion Жанр Chivalric novel[вд] Автор Кретьен де Труа Язык оригинала старофранцузский язык Дата первой публикации 1170 Предыдущее Рыцарь телеги, или Ланселот Следующее Персеваль, или Повесть о Граале  Медиафайлы на Викискладе «Иве́н, или Р…

Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya