In statistics, the Pearson correlation coefficient (PCC)[a] is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations. As a simple example, one would expect the age and height of a sample of children from a primary school to have a Pearson correlation coefficient significantly greater than 0, but less than 1 (as 1 would represent an unrealistically perfect correlation).
The correlation coefficient can be derived by considering the cosine of the angle between two points representing the two sets of x and y co-ordinate data.[10] This expression is therefore a number between -1 and 1 and is equal to unity when all the points lie on a straight line.
Definition
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.[verification needed]
For a population
Pearson's correlation coefficient, when applied to a population, is commonly represented by the Greek letter ρ (rho) and may be referred to as the population correlation coefficient or the population Pearson correlation coefficient. Given a pair of random variables (for example, Height and Weight), the formula for ρ[11] is[12]
The formula for can be expressed in terms of mean and expectation. Since[11]
the formula for can also be written as
where
and are defined as above
is the mean of
is the mean of
is the expectation.
The formula for can be expressed in terms of uncentered moments. Since
the formula for can also be written as
For a sample
Pearson's correlation coefficient, when applied to a sample, is commonly represented by and may be referred to as the sample correlation coefficient or the sample Pearson correlation coefficient. We can obtain a formula for by substituting estimates of the covariances and variances based on a sample into the formula above. Given paired data consisting of pairs, is defined as
This formula suggests a convenient single-pass algorithm for calculating sample correlations, though depending on the numbers involved, it can sometimes be numerically unstable.
An equivalent expression gives the formula for as the mean of the products of the standard scores as follows:
where
are defined as above, and are defined below
is the standard score (and analogously for the standard score of ).
Alternative formulae for are also available. For example, one can use the following formula for :
Under heavy noise conditions, extracting the correlation coefficient between two sets of stochastic variables is nontrivial, in particular where Canonical Correlation Analysis reports degraded correlation values due to the heavy noise contributions. A generalization of the approach is given elsewhere.[13]
The values of both the sample and population Pearson correlation coefficients are on or between −1 and 1. Correlations equal to +1 or −1 correspond to data points lying exactly on a line (in the case of the sample correlation), or to a bivariate distribution entirely supported on a line (in the case of the population correlation). The Pearson correlation coefficient is symmetric: corr(X,Y) = corr(Y,X).
A key mathematical property of the Pearson correlation coefficient is that it is invariant under separate changes in location and scale in the two variables. That is, we may transform X to a + bX and transform Y to c + dY, where a, b, c, and d are constants with b, d > 0, without changing the correlation coefficient. (This holds for both the population and sample Pearson correlation coefficients.) More general linear transformations do change the correlation: see § Decorrelation of n random variables for an application of this.
Interpretation
The correlation coefficient ranges from −1 to 1. An absolute value of exactly 1 implies that a linear equation describes the relationship between X and Y perfectly, with all data points lying on a line. The correlation sign is determined by the regression slope: a value of +1 implies that all data points lie on a line for which Y increases as X increases, whereas a value of -1 implies a line where Y increases while X decreases.[15] A value of 0 implies that there is no linear dependency between the variables.[16]
More generally, (Xi − X)(Yi − Y) is positive if and only if Xi and Yi lie on the same side of their respective means. Thus the correlation coefficient is positive if Xi and Yi tend to be simultaneously greater than, or simultaneously less than, their respective means. The correlation coefficient is negative (anti-correlation) if Xi and Yi tend to lie on opposite sides of their respective means. Moreover, the stronger either tendency is, the larger is the absolute value of the correlation coefficient.
Rodgers and Nicewander[17] cataloged thirteen ways of interpreting correlation or simple functions of it:
Function of raw scores and means
Standardized covariance
Standardized slope of the regression line
Geometric mean of the two regression slopes
Square root of the ratio of two variances
Mean cross-product of standardized variables
Function of the angle between two standardized regression lines
Function of the angle between two variable vectors
Rescaled variance of the difference between standardized scores
Estimated from the balloon rule
Related to the bivariate ellipses of isoconcentration
Function of test statistics from designed experiments
Ratio of two means
Geometric interpretation
For uncentered data, there is a relation between the correlation coefficient and the angle φ between the two regression lines, y = gX(x) and x = gY(y), obtained by regressing y on x and x on y respectively. (Here, φ is measured counterclockwise within the first quadrant formed around the lines' intersection point if r > 0, or counterclockwise from the fourth to the second quadrant if r < 0.) One can show[18] that if the standard deviations are equal, then r = sec φ − tan φ, where sec and tan are trigonometric functions.
For centered data (i.e., data which have been shifted by the sample means of their respective variables so as to have an average of zero for each variable), the correlation coefficient can also be viewed as the cosine of the angleθ between the two observed vectors in N-dimensional space (for N observations of each variable).[19]
Both the uncentered (non-Pearson-compliant) and centered correlation coefficients can be determined for a dataset. As an example, suppose five countries are found to have gross national products of 1, 2, 3, 5, and 8 billion dollars, respectively. Suppose these same five countries (in the same order) are found to have 11%, 12%, 13%, 15%, and 18% poverty. Then let x and y be ordered 5-element vectors containing the above data: x = (1, 2, 3, 5, 8) and y = (0.11, 0.12, 0.13, 0.15, 0.18).
By the usual procedure for finding the angle θ between two vectors (see dot product), the uncentered correlation coefficient is
This uncentered correlation coefficient is identical with the cosine similarity. The above data were deliberately chosen to be perfectly correlated: y = 0.10 + 0.01 x. The Pearson correlation coefficient must therefore be exactly one. Centering the data (shifting x by ℰ(x) = 3.8 and y by ℰ(y) = 0.138) yields x = (−2.8, −1.8, −0.8, 1.2, 4.2) and y = (−0.028, −0.018, −0.008, 0.012, 0.042), from which
as expected.
Interpretation of the size of a correlation
Several authors have offered guidelines for the interpretation of a correlation coefficient.[20][21] However, all such criteria are in some ways arbitrary.[21] The interpretation of a correlation coefficient depends on the context and purposes. A correlation of 0.8 may be very low if one is verifying a physical law using high-quality instruments, but may be regarded as very high in the social sciences, where there may be a greater contribution from complicating factors.
Inference
Statistical inference based on Pearson's correlation coefficient often focuses on one of the following two aims:
One aim is to test the null hypothesis that the true correlation coefficient ρ is equal to 0, based on the value of the sample correlation coefficient r.
The other aim is to derive a confidence interval that, on repeated sampling, has a given probability of containing ρ.
Methods of achieving one or both of these aims are discussed below.
Using a permutation test
Permutation tests provide a direct approach to performing hypothesis tests and constructing confidence intervals. A permutation test for Pearson's correlation coefficient involves the following two steps:
Using the original paired data (xi, yi), randomly redefine the pairs to create a new data set (xi, yi′), where the i′ are a permutation of the set {1,...,n}. The permutation i′ is selected randomly, with equal probabilities placed on all n! possible permutations. This is equivalent to drawing the i′ randomly without replacement from the set {1, ..., n}. In bootstrapping, a closely related approach, the i and the i′ are equal and drawn with replacement from {1, ..., n};
Construct a correlation coefficient r from the randomized data.
To perform the permutation test, repeat steps (1) and (2) a large number of times. The p-value for the permutation test is the proportion of the r values generated in step (2) that are larger than the Pearson correlation coefficient that was calculated from the original data. Here "larger" can mean either that the value is larger in magnitude, or larger in signed value, depending on whether a two-sided or one-sided test is desired.
Using a bootstrap
The bootstrap can be used to construct confidence intervals for Pearson's correlation coefficient. In the "non-parametric" bootstrap, n pairs (xi, yi) are resampled "with replacement" from the observed set of n pairs, and the correlation coefficient r is calculated based on the resampled data. This process is repeated a large number of times, and the empirical distribution of the resampled r values are used to approximate the sampling distribution of the statistic. A 95% confidence interval for ρ can be defined as the interval spanning from the 2.5th to the 97.5th percentile of the resampled r values.
Standard error
If and are random variables, with a simple linear relationship between them with an additive normal noise (i.e., y= a + bx + e), then a standard error associated to the correlation is
where is the correlation and the sample size.[22][23]
has a student's t-distribution in the null case (zero correlation).[24] This holds approximately in case of non-normal observed values if sample sizes are large enough.[25] For determining the critical values for r the inverse function is needed:
Alternatively, large sample, asymptotic approaches can be used.
Another early paper[26] provides graphs and tables for general values of ρ, for small sample sizes, and discusses computational approaches.
In the case where the underlying variables are not normal, the sampling distribution of Pearson's correlation coefficient follows a Student's t-distribution, but the degrees of freedom are reduced.[27]
In the special case when (zero population correlation), the exact density function f(r) can be written as
where is the beta function, which is one way of writing the density of a Student's t-distribution for a studentized sample correlation coefficient, as above.
Using the exact confidence distribution
Confidence intervals and tests can be calculated from a confidence distribution. An exact confidence density for ρ is[31]
where is the Gaussian hypergeometric function and .
To obtain a confidence interval for ρ, we first compute a confidence interval for F():
The inverse Fisher transformation brings the interval back to the correlation scale.
For example, suppose we observe r = 0.7 with a sample size of n=50, and we wish to obtain a 95% confidence interval for ρ. The transformed value is , so the confidence interval on the transformed scale is , or (0.5814, 1.1532). Converting back to the correlation scale yields (0.5237, 0.8188).
The square of the sample correlation coefficient is typically denoted r2 and is a special case of the coefficient of determination. In this case, it estimates the fraction of the variance in Y that is explained by X in a simple linear regression. So if we have the observed dataset and the fitted dataset then as a starting point the total variation in the Yi around their average value can be decomposed as follows
where the are the fitted values from the regression analysis. This can be rearranged to give
The two summands above are the fraction of variance in Y that is explained by X (right) and that is unexplained by X (left).
Next, we apply a property of least squares regression models, that the sample covariance between and is zero. Thus, the sample correlation coefficient between the observed and fitted response values in the regression can be written (calculation is under expectation, assumes Gaussian statistics)
Thus
where is the proportion of variance in Y explained by a linear function of X.
In the derivation above, the fact that
can be proved by noticing that the partial derivatives of the residual sum of squares (RSS) over β0 and β1 are equal to 0 in the least squares model, where
The population Pearson correlation coefficient is defined in terms of moments, and therefore exists for any bivariate probability distribution for which the populationcovariance is defined and the marginalpopulation variances are defined and are non-zero. Some probability distributions, such as the Cauchy distribution, have undefined variance and hence ρ is not defined if X or Y follows such a distribution. In some practical applications, such as those involving data suspected to follow a heavy-tailed distribution, this is an important consideration. However, the existence of the correlation coefficient is usually not a concern; for instance, if the range of the distribution is bounded, ρ is always defined.
Sample size
If the sample size is moderate or large and the population is normal, then, in the case of the bivariate normal distribution, the sample correlation coefficient is the maximum likelihood estimate of the population correlation coefficient, and is asymptoticallyunbiased and efficient, which roughly means that it is impossible to construct a more accurate estimate than the sample correlation coefficient.
If the sample size is large and the population is not normal, then the sample correlation coefficient remains approximately unbiased, but may not be efficient.
If the sample size is large, then the sample correlation coefficient is a consistent estimator of the population correlation coefficient as long as the sample means, variances, and covariance are consistent (which is guaranteed when the law of large numbers can be applied).
If the sample size is small, then the sample correlation coefficient r is not an unbiased estimate of ρ.[11] The adjusted correlation coefficient must be used instead: see elsewhere in this article for the definition.
Correlations can be different for imbalanced dichotomous data when there is variance error in sample.[32]
Robustness
Like many commonly used statistics, the sample statisticr is not robust,[33] so its value can be misleading if outliers are present.[34][35] Specifically, the PMCC is neither distributionally robust,[36] nor outlier resistant[33] (see Robust statistics § Definition). Inspection of the scatterplot between X and Y will typically reveal a situation where lack of robustness might be an issue, and in such cases it may be advisable to use a robust measure of association. Note however that while most robust estimators of association measure statistical dependence in some way, they are generally not interpretable on the same scale as the Pearson correlation coefficient.
Statistical inference for Pearson's correlation coefficient is sensitive to the data distribution. Exact tests, and asymptotic tests based on the Fisher transformation can be applied if the data are approximately normally distributed, but may be misleading otherwise. In some situations, the bootstrap can be applied to construct confidence intervals, and permutation tests can be applied to carry out hypothesis tests. These non-parametric approaches may give more meaningful results in some situations where bivariate normality does not hold. However the standard versions of these approaches rely on exchangeability of the data, meaning that there is no ordering or grouping of the data pairs being analyzed that might affect the behavior of the correlation estimate.
A stratified analysis is one way to either accommodate a lack of bivariate normality, or to isolate the correlation resulting from one factor while controlling for another. If W represents cluster membership or another factor that it is desirable to control, we can stratify the data based on the value of W, then calculate a correlation coefficient within each stratum. The stratum-level estimates can then be combined to estimate the overall correlation while controlling for W.[37]
Variations of the correlation coefficient can be calculated for different purposes. Here are some examples.
Adjusted correlation coefficient
The sample correlation coefficient r is not an unbiased estimate of ρ. For data that follows a bivariate normal distribution, the expectation E[r] for the sample correlation coefficient r of a normal bivariate is[38]
therefore r is a biased estimator of
The unique minimum variance unbiased estimator radj is given by[39]
Suppose observations to be correlated have differing degrees of importance that can be expressed with a weight vector w. To calculate the correlation between vectors x and y with the weight vector w (all of length n),[40][41]
Weighted mean:
Weighted covariance
Weighted correlation
Reflective correlation coefficient
The reflective correlation is a variant of Pearson's correlation in which the data are not centered around their mean values.[citation needed] The population reflective correlation is
The reflective correlation is symmetric, but it is not invariant under translation:
The sample reflective correlation is equivalent to cosine similarity:
The weighted version of the sample reflective correlation is
Scaled correlation is a variant of Pearson's correlation in which the range of the data is restricted intentionally and in a controlled manner to reveal correlations between fast components in time series.[42] Scaled correlation is defined as average correlation across short segments of data.
Let be the number of segments that can fit into the total length of the signal for a given scale :
The scaled correlation across the entire signals is then computed as
where is Pearson's coefficient of correlation for segment .
By choosing the parameter , the range of values is reduced and the correlations on long time scale are filtered out, only the correlations on short time scales being revealed. Thus, the contributions of slow components are removed and those of fast components are retained.
Pearson's distance
A distance metric for two variables X and Y known as Pearson's distance can be defined from their correlation coefficient as[43]
Considering that the Pearson correlation coefficient falls between [−1, +1], the Pearson distance lies in [0, 2]. The Pearson distance has been used in cluster analysis and data detection for communications and storage with unknown gain and offset.[44]
The Pearson "distance" defined this way assigns distance greater than 1 to negative correlations. In reality, both strong positive correlation and negative correlations are meaningful, so care must be taken when Pearson "distance" is used for nearest neighbor algorithm as such algorithm will only include neighbors with positive correlation and exclude neighbors with negative correlation. Alternatively, an absolute valued distance, , can be applied, which will take both positive and negative correlations into consideration. The information on positive and negative association can be extracted separately, later.
For variables X = {x1,...,xn} and Y = {y1,...,yn} that are defined on the unit circle [0, 2π), it is possible to define a circular analog of Pearson's coefficient.[45] This is done by transforming data points in X and Y with a sine function such that the correlation coefficient is given as:
where and are the circular means of X and Y. This measure can be useful in fields like meteorology where the angular direction of data is important.
If a population or data-set is characterized by more than two variables, a partial correlation coefficient measures the strength of dependence between a pair of variables that is not accounted for by the way in which they both change in response to variations in a selected subset of the other variables.
Pearson correlation coefficient in quantum systems
For two observables, and , in a bipartite quantum system Pearson correlation coefficient is defined as [46][47]
where
is the expectation value of the observable ,
is the expectation value of the observable ,
is the expectation value of the observable ,
is the variance of the observable , and
is the variance of the observable .
is symmetric, i.e., , and its absolute value is invariant under affine transformations.
It is always possible to remove the correlations between all pairs of an arbitrary number of random variables by using a data transformation, even if the relationship between the variables is nonlinear. A presentation of this result for population distributions is given by Cox & Hinkley.[48]
A corresponding result exists for reducing the sample correlations to zero. Suppose a vector of n random variables is observed m times. Let X be a matrix where is the jth variable of observation i. Let be an m by m square matrix with every element 1. Then D is the data transformed so every random variable has zero mean, and T is the data transformed so all variables have zero mean and zero correlation with all other variables – the sample correlation matrix of T will be the identity matrix. This has to be further divided by the standard deviation to get unit variance. The transformed variables will be uncorrelated, even though they may not be independent.
where an exponent of −+1⁄2 represents the matrix square root of the inverse of a matrix. The correlation matrix of T will be the identity matrix. If a new data observation x is a row vector of n elements, then the same transform can be applied to x to get the transformed vectors d and t:
The Pandas and Polars Python libraries implement the Pearson correlation coefficient calculation as the default option for the methods pandas.DataFrame.corr and polars.corr, respectively.
^Also known as Pearson's r, the Pearson product-moment correlation coefficient (PPMCC), the bivariate correlation,[1] or simply the unqualified correlation coefficient[2]
^As early as 1877, Galton was using the term "reversion" and the symbol "r" for what would become "regression".[3][4][5]
^Garren, Steven T. (15 June 1998). "Maximum likelihood estimation of the correlation coefficient in a bivariate normal model, with missing data". Statistics & Probability Letters. 38 (3): 281–288. doi:10.1016/S0167-7152(98)00035-2.
^Schmid, John Jr. (December 1947). "The relationship between the coefficient of correlation and the angle included between regression lines". The Journal of Educational Research. 41 (4): 311–313. doi:10.1080/00220671.1947.10881608. JSTOR27528906.
^Rummel, R.J. (1976). "Understanding Correlation". ch. 5 (as illustrated for a special case in the next paragraph).
^Buda, Andrzej; Jarynowski, Andrzej (December 2010). Life Time of Correlations and its Applications. Wydawnictwo Niezależne. pp. 5–21. ISBN9788391527290.
^ abCohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.).
^Hotelling, Harold (1953). "New Light on the Correlation Coefficient and its Transforms". Journal of the Royal Statistical Society. Series B (Methodological). 15 (2): 193–232. doi:10.1111/j.2517-6161.1953.tb00135.x. JSTOR2983768.
^Kenney, J.F.; Keeping, E.S. (1951). Mathematics of Statistics. Vol. Part 2 (2nd ed.). Princeton, NJ: Van Nostrand.
^Katz., Mitchell H. (2006) Multivariable Analysis – A Practical Guide for Clinicians. 2nd Edition. Cambridge University Press. ISBN978-0-521-54985-1. ISBN0-521-54985-X
^Hotelling, H. (1953). "New Light on the Correlation Coefficient and its Transforms". Journal of the Royal Statistical Society. Series B (Methodological). 15 (2): 193–232. doi:10.1111/j.2517-6161.1953.tb00135.x. JSTOR2983768.
"cocor". comparingcorrelations.org. – A free web interface and R package for the statistical comparison of two dependent or independent correlations with overlapping or non-overlapping variables.
"Correlation". nagysandor.eu. – an interactive Flash simulation on the correlation of two normally distributed variables.
"Guess the Correlation". – A game where players guess how correlated two variables in a scatter plot are, in order to gain a better understanding of the concept of correlation.
Martijn van Helvert Anggota Dewan Perwakilan BelandaMasa jabatan12 November 2014 – 31 Maret 2021Anggota Negeri-Negeri LimburgMasa jabatan10 Maret 2011 – 26 Maret 2015 Informasi pribadiLahir7 April 1978 (umur 45)Sittard, BelandaPartai politikSeruan Demokrat KristenAlma materUniversitas UtrechtSunting kotak info • L • B Martijn Johanna Franciscus van Helvert (lahir 7 April 1978) adalah seorang politikus Belanda. Ia menjadi anggota Dewan Perwakilan Belanda u…
James Perch Informasi pribadiNama lengkap James Robert PerchTanggal lahir 28 September 1985 (umur 38)Tempat lahir Mansfield, InggrisTinggi 1,80 m (5 ft 11 in) [1]Posisi bermain BekInformasi klubKlub saat ini Wigan AthleticNomor 24Karier junior1996–2004 Nottingham ForestKarier senior*Tahun Tim Tampil (Gol)2004–2010 Nottingham Forest 190 (12)2010–2013 Newcastle United 65 (1)2013– Wigan Athletic 20 (0) * Penampilan dan gol di klub senior hanya dihitung dari liga …
Canon de 75 mm Modele 1897 Canon de 75 Modèle 1897 dipamerkan di Les Invalides Jenis Artileri lapangan resimen Negara asal Prancis Sejarah pemakaian Masa penggunaan 1898–sekarang (meriam penghormatan) Digunakan oleh PrancisAmerika SerikatPolandiaBelgiaKerajaan SerbiaKerajaan RumaniaNazi JermanFinlandiaPortugalSpanyolBritania RayaMeksiko Pada perang French colonial campaignsPemberontakan Boxer,Perang Dunia I,Perang Polandia–Soviet,Perang Rif,Perang Saudara Spanyol,Perang …
Miami-Dade County, FloridaCountyMiami-DadeKantor pengadilan Miami-Dade County BenderaSealLogoJulukan: Dade County, Dade, Metro-Dade, Greater MiamiLokasi di negara bagian FloridaLokasi negara bagian Florida di Amerika SerikatDidirikan18 Januari 1836Asal namaFrancis L. DadeSeatMiamiKota terbesarMiamiWilayah • Keseluruhan2.431 sq mi (6.296 km2) • Daratan1.898 sq mi (4.916 km2) • Perairan533 sq mi (1.380 km2)Popula…
Offensive strategy in basketball A continuity offense is one of two main categories of basketball offenses, the other being motion offense. Continuity offenses are characterized by a pattern of movement, cuts, screens and passes which eventually leads back to the starting formation. At this point the pattern of movement is repeated, hence the name continuity offense. The best-known continuity offenses are the shuffle offense, flex offense, wheel offense and John Wooden's UCLA High Post Offense. …
Not to be confused with Nerchinsky District. District in Zabaykalsky Krai, RussiaNerchinsko-Zavodsky District Нерчинско-Заводский районDistrict FlagLocation of Nerchinsko-Zavodsky District in Zabaykalsky KraiCoordinates: 51°38′28″N 119°49′16″E / 51.641°N 119.821°E / 51.641; 119.821CountryRussiaFederal subjectZabaykalsky Krai[1]EstablishedJanuary 4, 1926[1]Administrative centerNerchinsky Zavod[1]Area[2]…
Sporting event delegationBosnia and Herzegovina at the1996 Summer OlympicsIOC codeBIHNOCOlympic Committee of Bosnia and HerzegovinaWebsitewww.okbih.ba (in Bosnian, Serbian, and Croatian)in AtlantaCompetitors9 in 7 sportsFlag bearers Fahrudin Hodžić (opening)Islam Đugum (closing)Medals Gold 0 Silver 0 Bronze 0 Total 0 Summer Olympics appearances (overview)199219962000200420082012201620202024Other related appearances Yugoslavia (1920–1992 W) Bosnia and Herzegovina competed at t…
1978 United States Senate election in New Mexico ← 1972 November 7, 1978 (1978-11-07) 1984 → Nominee Pete Domenici Toney Anaya Party Republican Democratic Popular vote 183,442 160,045 Percentage 53.41% 46.59% County resultsDomenici: 50–60% 60–70% 70–80%Anaya: 50–60% 60–70% U.S. senator befo…
WatesDesaNegara IndonesiaProvinsiJawa TimurKabupatenPonorogoKecamatanJenanganKode pos63492Kode Kemendagri35.02.18.2016 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Wates adalah sebuah desa di wilayah Kecamatan Jenangan, Kabupaten Ponorogo, Jawa Timur. Wates, Jenangan lbsKecamatan Jenangan, Kabupaten Ponorogo, Jawa TimurKelurahan Setono Singosaren Desa Jenangan Jimbe Kemiri Mrican Nglayang Ngrupit Panjeng Paringan Pintu Plalangan Sedah Semanding Sraten Tanjungsari Wates Artikel …
Alessandro CortiniCortini nel 2010 Nazionalità Italia GenereSynth popRock alternativoIndustrial rockIndustrial metal Periodo di attività musicale1994 – in attività Strumentovoce, tastiera, sintetizzatore, basso, chitarra, pianoforte EtichettaInterscope Records, Buddyhead Records, Modwheelmusic Sito ufficiale Modifica dati su Wikidata · Manuale Alessandro Cortini (Bologna, 24 maggio 1976) è un polistrumentista, compositore e produttore discografico italiano. Ne…
Teco Green vase, before 1922 Vase The American Terracotta Tile and Ceramic Company was founded in 1881; originally as Spring Valley Tile Works; in Terra Cotta, Illinois, between Crystal Lake, Illinois and McHenry, Illinois near Chicago by William Day Gates. It became the country's first manufactury of architectural terracotta in 1889. The production consisted of drain tile, brick, chimney tops, finials, urns, and other economically fireproof building materials. Gates used the facilities to exper…
Bagian dari seri tentangUtopia Mitos dan Religius Arkadia Kota Kaisar Cloud cuckoo land Cockaigne Eden Taman para dewa Zaman keemasan Ketumati Kerajaan Tuhan Opona Mag Mell Mahoroba Merry England Mezzoramia Gunung Penglai Neverland Yerusalem Baru Sion Fiksi utopis Teoretis Dausuva Heterotopia Kota ideal Pantisokrasi Sosiologi utopis sejati Sforzinda Studi utopis Millenarianism Teori Internasional Ketiga Futurologi Gagasan Agrikulturalisme Eskapisme Teknologi Utopianisme siber Ekonomi pasca-kelan…
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (April 2015) (Learn how and when to remove this message) Sukhothai rice noodles Sukhothai rice noodles (Thai: ก๋วยเตี๋ยวสุโขทัย, kuaitiao Sukhothai) is a style of rice noodle soup (kuai tiao) served in Thailand. It consists of rice noodles with sto…
Prudhoe Bay oil fieldLocation of Prudhoe Bay oil fieldCountryUnited StatesRegionAlaska North SlopeOffshore/onshoreonshoreCoordinates70°18′24″N 148°43′57″W / 70.30667°N 148.73250°W / 70.30667; -148.73250OperatorBPPartnersBP, ExxonMobil, ConocoPhillipsField historyDiscoveryMarch 12, 1968 by ARCO and Exxon's Prudhoe Bay State #1 wellStart of productionJune 20, 1977Peak of production1.5 million barrels per day (240,000 m3/d)Peak year1988ProductionCurrent prod…
Novel by Ellery Queen For the 1969 novel by John Brunner, see Double, Double (Brunner novel). For the 1989 novel by Michael Jan Friedman, see Double, Double (Star Trek novel). Double, Double (also published as The Case of the Seven Murders) First US editionAuthorEllery QueenCountryUnited StatesLanguageEnglishSeriesEllery Queen mysteriesGenreMystery novelPublisherLittle, Brown (US)Gollancz (UK)Publication date1950Media typePrint (hardcover and paperback)Preceded byCat of Many Tails …
Swedish footballer (1908–1989) Erik Almgren Personal informationFull name Karl Erik Algot AlmgrenDate of birth (1908-01-28)28 January 1908Place of birth Stockholm, SwedenDate of death 23 August 1989(1989-08-23) (aged 81)Place of death Stockholm, SwedenPosition(s) MidfielderYouth career0000–1933 Essinge IKSenior career*Years Team Apps (Gls)1934–1943 AIK 197 (4)International career1937–1938 Sweden[1] 13 (0)Managerial career1943–1944 AIK1945 IFK Helsingfors1948 Åtvidabergs F…
Non-state conflicts between rival nomadic tribes Sudanese nomadic conflictsPart of the Sudanese Civil WarsSudan (orange) and South Sudan (green)shown within AfricaDate2008 - PresentLocationDarfur, West Kordofan and South SudanStatus OngoingBelligerents Dinka tribes Nuer tribes Murle tribesCasualties and losses 2,000[1] – 2,500[2] killed from 2009 to January 2010350,000 displaced[2] by January 20103,000 killed from December to January 2012vteConflicts in Sudanand South S…
Unincorporated community in Iowa, United StatesTyrone, IowaUnincorporated communityTyroneShow map of IowaTyroneShow map of the United StatesCoordinates: 40°58′40″N 92°56′48″W / 40.97778°N 92.94667°W / 40.97778; -92.94667CountryUnited StatesStateIowaCountyMonroeElevation[1]850 ft (259 m)Time zoneUTC-6 (Central (CST)) • Summer (DST)UTC-5 (CDT)Area code641GNIS feature ID462410[1] Tyrone is an unincorporated community in Monro…