Share to: share facebook share twitter share wa share telegram print page

Empirical distribution function

The green curve, which asymptotically approaches heights of 0 and 1 without reaching them, is the true cumulative distribution function of the standard normal distribution. The grey hash marks represent the observations in a particular sample drawn from that distribution, and the horizontal steps of the blue step function (including the leftmost point in each step but not including the rightmost point) form the empirical distribution function of that sample. (Click here to load a new graph.)
The green curve, which asymptotically approaches heights of 0 and 1 without reaching them, is the true cumulative distribution function of the standard normal distribution. The grey hash marks represent the observations in a particular sample drawn from that distribution, and the horizontal steps of the blue step function (including the leftmost point in each step but not including the rightmost point) form the empirical distribution function of that sample. (Click here to load a new graph.)

In statistics, an empirical distribution function (commonly also called an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample.[1] This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified value of the measured variable is the fraction of observations of the measured variable that are less than or equal to the specified value.

The empirical distribution function is an estimate of the cumulative distribution function that generated the points in the sample. It converges with probability 1 to that underlying distribution, according to the Glivenko–Cantelli theorem. A number of results exist to quantify the rate of convergence of the empirical distribution function to the underlying cumulative distribution function.

Definition

Let (X1, …, Xn) be independent, identically distributed real random variables with the common cumulative distribution function F(t). Then the empirical distribution function is defined as[2]

where is the indicator of event A. For a fixed t, the indicator is a Bernoulli random variable with parameter p = F(t); hence is a binomial random variable with mean nF(t) and variance nF(t)(1 − F(t)). This implies that is an unbiased estimator for F(t).

However, in some textbooks, the definition is given as

[3][4]

Asymptotic properties

Since the ratio (n + 1)/n approaches 1 as n goes to infinity, the asymptotic properties of the two definitions that are given above are the same.

By the strong law of large numbers, the estimator converges to F(t) as n → ∞ almost surely, for every value of t:[2]

thus the estimator is consistent. This expression asserts the pointwise convergence of the empirical distribution function to the true cumulative distribution function. There is a stronger result, called the Glivenko–Cantelli theorem, which states that the convergence in fact happens uniformly over t:[5]

The sup-norm in this expression is called the Kolmogorov–Smirnov statistic for testing the goodness-of-fit between the empirical distribution and the assumed true cumulative distribution function F. Other norm functions may be reasonably used here instead of the sup-norm. For example, the L2-norm gives rise to the Cramér–von Mises statistic.

The asymptotic distribution can be further characterized in several different ways. First, the central limit theorem states that pointwise, has asymptotically normal distribution with the standard rate of convergence:[2]

This result is extended by the Donsker’s theorem, which asserts that the empirical process , viewed as a function indexed by , converges in distribution in the Skorokhod space to the mean-zero Gaussian process , where B is the standard Brownian bridge.[5] The covariance structure of this Gaussian process is

The uniform rate of convergence in Donsker’s theorem can be quantified by the result known as the Hungarian embedding:[6]

Alternatively, the rate of convergence of can also be quantified in terms of the asymptotic behavior of the sup-norm of this expression. Number of results exist in this venue, for example the Dvoretzky–Kiefer–Wolfowitz inequality provides bound on the tail probabilities of :[6]

In fact, Kolmogorov has shown that if the cumulative distribution function F is continuous, then the expression converges in distribution to , which has the Kolmogorov distribution that does not depend on the form of F.

Another result, which follows from the law of the iterated logarithm, is that [6]

and

Confidence intervals

Empirical CDF, CDF and confidence interval plots for various sample sizes of normal distribution
Empirical CDF, CDF and confidence interval plots for various sample sizes of Cauchy distribution
Empirical CDF, CDF and confidence interval plots for various sample sizes of triangle distribution

As per Dvoretzky–Kiefer–Wolfowitz inequality the interval that contains the true CDF, , with probability is specified as

As per the above bounds, we can plot the Empirical CDF, CDF and confidence intervals for different distributions by using any one of the statistical implementations.

Statistical implementation

A non-exhaustive list of software implementations of Empirical Distribution function includes:

  • In R software, we compute an empirical cumulative distribution function, with several methods for plotting, printing and computing with such an “ecdf” object.
  • In MATLAB we can use Empirical cumulative distribution function (cdf) plot
  • jmp from SAS, the CDF plot creates a plot of the empirical cumulative distribution function.
  • Minitab, create an Empirical CDF
  • Mathwave, we can fit probability distribution to our data
  • Dataplot, we can plot Empirical CDF plot
  • Scipy, we can use scipy.stats.ecdf
  • Statsmodels, we can use statsmodels.distributions.empirical_distribution.ECDF
  • Matplotlib, using the matplotlib.pyplot.ecdf function (new in version 3.8.0)[7]
  • Seaborn, using the seaborn.ecdfplot function
  • Plotly, using the plotly.express.ecdf function
  • Excel, we can plot Empirical CDF plot
  • ArviZ, using the az.plot_ecdf function

See also

References

  1. ^ A modern introduction to probability and statistics: Understanding why and how. Michel Dekking. London: Springer. 2005. p. 219. ISBN 978-1-85233-896-1. OCLC 262680588.{{cite book}}: CS1 maint: others (link)
  2. ^ a b c van der Vaart, A.W. (1998). Asymptotic statistics. Cambridge University Press. p. 265. ISBN 0-521-78450-6.
  3. ^ Coles, S. (2001) An Introduction to Statistical Modeling of Extreme Values. Springer, p. 36, Definition 2.4. ISBN 978-1-4471-3675-0.
  4. ^ Madsen, H.O., Krenk, S., Lind, S.C. (2006) Methods of Structural Safety. Dover Publications. p. 148-149. ISBN 0486445976
  5. ^ a b van der Vaart, A.W. (1998). Asymptotic statistics. Cambridge University Press. p. 266. ISBN 0-521-78450-6.
  6. ^ a b c van der Vaart, A.W. (1998). Asymptotic statistics. Cambridge University Press. p. 268. ISBN 0-521-78450-6.
  7. ^ "What's new in Matplotlib 3.8.0 (Sept 13, 2023) — Matplotlib 3.8.3 documentation".

Further reading

Read other articles:

Percentages of United States listed species which are conservation-reliant Conservation-reliant species are animal or plant species that require continuing species-specific wildlife management intervention such as predator control, habitat management and parasite control to survive, even when a self-sustainable recovery in population is achieved.[1] History The term conservation-reliant species grew out of the conservation biology undertaken by The Endangered Species Act at Thirty Projec…

Pour les articles homonymes, voir Carpenter. Edward CarpenterBiographieNaissance 29 août 1844HoveDécès 28 juin 1929 (à 84 ans)SurreySépulture Mount Cemetery (en)Nationalité britanniqueFormation Trinity HallLycée HocheActivités Poète, philosophe, écrivainAutres informationsParti politique Parti travaillisteMouvement Socialisme libertaireSignatureVue de la sépulture.modifier - modifier le code - modifier Wikidata Edward Carpenter, né le 29 août 1844 à Hove et mort le 28 juin 192…

Final Piala Liga Inggris 1986TurnamenPiala Liga Inggris 1985–1986 Oxford United Queens Park Rangers 3 0 Tanggal20 April 1986StadionStadion Wembley, LondonWasitKeith Hackett (Sheffield)Penonton90.396← 1985 1987 → Final Piala Liga Inggris 1986 adalah pertandingan final ke-26 dari turnamen sepak bola Piala Liga Inggris untuk menentukan juara musim 1985–1986. Pertandingan ini diselenggarakan pada 20 April 1986 di Stadion Wembley. Oxford United memenangkan pertandingan ini dengan skor…

GuruSeorang guru yang sedang menulis di papan tulis.PekerjaanNamaGuruFasilitatorPengajarPendidikJenis pekerjaanProfesiSektor kegiatanPendidikanPenggambaranKompetensiPedagogiKepribadianSosialProfesionalBidang pekerjaanSekolahPekerjaan terkaitProfesorDosen Guru (Sanskerta: गुरू yang berarti guru, tetapi arti secara harfiahnya adalah berat) adalah seorang pengajar suatu ilmu. Dalam bahasa Indonesia, guru umumnya merujuk pendidik profesional dengan tugas utama mendidik, mengajar, membimb…

Megaloptera TaksonomiKerajaanAnimaliaFilumArthropodaKelasInsectaOrdoMegaloptera Latreille, 1802 lbs Megaloptera adalah ordo serangga yang terdiri atas dua famili, yaitu famili Corydalinae dan Sialidae. Serangga ini memiliki bentuk tubuh dari 2 cm hingga 10 cm. Serangga ini memiliki larva yang masih primitif, terutama dari famili Corydalinae, dan larva-larva ini berbentuk seperti ulat. Metamorfosis serangga ini relatif simpel.[1][2] Referensi ^ Encyclopedia of entomology…

Cet article possède des paronymes, voir Pontigny et Potigny. Pontivy Les douves du château des Rohan. Blason Administration Pays France Région Bretagne Département Morbihan(sous-préfecture) Arrondissement Pontivy(chef-lieu) Intercommunalité Pontivy Communauté(siège) Maire Mandat Christine Le Strat (MoDem) 2020-2026 Code postal 56300 Code commune 56178 Démographie Gentilé Pontivyen, Pontivyenne[1] Populationmunicipale 14 774 hab. (2021 ) Densité 595 hab./km2 Population a…

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: 1939 French Championships – Men's singles – news · newspapers · books · scholar · JSTOR (March 2020) Men's singles1939 French ChampionshipsFinalChampion Don McNeill[1]Runner-up Bobby Riggs[1]Score6–3, 6–2, 6–4DetailsSeeds2Events S…

Généralité de Metz 1552–1790(472 ans) Généralité de Metz dans le Royaume de France en 1789Informations générales Statut Généralité Capitale Metz Voir aussi : Royaume de FranceAdministration fiscale:- Généralité de MetzAdministration judiciaire:- Parlement de MetzAdministration militaire:- Gouvernement des Trois-ÉvêchésAdministration ecclésiastique:Province de Trèves :- Diocèse de Metz- Diocèse de Toul- Diocèse de Verdun- Diocèse de Nancy- Diocèse de Saint…

История Грузииსაქართველოს ისტორია Доисторическая Грузия Шулавери-шомутепинская культураКуро-араксская культураТриалетская культураКолхидская культураКобанская культураДиаухиМушки Древняя история КолхидаАриан-КартлиИберийское царство ФарнавазидыГрузия…

Questa voce sull'argomento centri abitati dell'Iowa è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Fairfieldcity(EN) Fairfield, Iowa Fairfield – Veduta LocalizzazioneStato Stati Uniti Stato federato Iowa ConteaJefferson TerritorioCoordinate41°00′26″N 91°57′57″W / 41.007222°N 91.965833°W41.007222; -91.965833 (Fairfield)Coordinate: 41°00′26″N 91°57′57″W&#x…

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)[2…

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) لوكهيد مارتن إيه-4إيه آر فايتنغهوكمعلومات عامةالنوع إيه-4 سكاي هوك بلد الأصل الولايات المتحدةالمهام مقاتل…

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддійсь…

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддійсь…

Baltic German poet, writer and translator Helene von Engelhardt Helene von Engelhardt (sometimes referred to by her married name Helene Pabst, sometimes Helene von Engelhardt-Schnellenstein; 2 September [O.S. 21 August] 1850 – 7 July [O.S. 24 June] 1910) was a Baltic German poet, writer and translator. Life and work Helene von Engelhardt was a member of the Baltic aristocratic family Engelhardt. She was born in Vileikiai,[1] East Prussia (now Lithuan…

Unfinished nuclear power plant in South Carolina, USA Abandoned unit 1 reactor building The Cherokee Nuclear Power Plant is an incomplete energy project 10 miles (16 km) outside Gaffney, South Carolina, United States. In the early 1970s, Duke Power started construction on a three-reactor nuclear power plant at the site. However, the project stalled due to economic problems by the early 1980s, leading to the project's eventual abandonment. In 1987, the power plant was the site of an und…

This is a list of properties and districts listed on the National Register of Historic Places in Alaska. There are approximately 400 listed sites in Alaska. Each of the state's 30 boroughs and census areas has at least two listings on the National Register, except for the Kusilvak Census Area, which has none. Contents: Boroughs and census areas in AlaskaBorough names are highlighted in bold Aleutians East • Aleutians West • Anchorage • Bethel • Bristol Bay • Chugach • Copper River …

Antimicrobial agent Not to be confused with triclosan or trichloromethane. Triclocarban Names Preferred IUPAC name N-(4-Chlorophenyl)-N′-(3,4-dichlorophenyl)urea Other names Trichlorocarbanilide, TCC, Solubacter, Vivilide Identifiers CAS Number 101-20-2 Y 3D model (JSmol) Interactive image ChEBI CHEBI:48347 Y ChEMBL ChEMBL1076347 Y ChemSpider 7266 Y ECHA InfoCard 100.002.659 PubChem CID 7547 UNII BGG1Y1ED0Y Y CompTox Dashboard (EPA) DTXSID4026214 InChI InChI=1S/C13H9Cl…

American politician John Floyd KingMember of the U.S. House of Representativesfrom Louisiana's 5th districtIn officeMarch 4, 1879 – March 3, 1887Preceded byJ. Smith YoungSucceeded byCherubusco Newton Personal detailsBorn(1842-04-20)April 20, 1842St. Simons IslandDiedMay 8, 1915(1915-05-08) (aged 73)Washington, D.C.Resting placeArlington National Cemetery[1]Arlington, VirginiaParentThomas Butler KingRelativesHenry KingEducationUniversity of Virginia at Charlott…

Protein in wheat & other cereals Gliadin/LMW gluteninIdentifiersSymbolGlia_gluteninInterProIPR001954 Gliadin [Seed storage proteins] N-terminal helical domainIdentifiersSymbolGliadinPfamPF13016InterProIPR016140Available protein structures:Pfam  structures / ECOD  PDBRCSB PDB; PDBe; PDBjPDBsumstructure summary Gliadin Gliadin (a type of prolamin) is a class of proteins present in wheat and several other cereals within the grass genus Triticum. Gliadins, which are a component of glut…

Kembali kehalaman sebelumnya