Share to: share facebook share twitter share wa share telegram print page

Measurable cardinal

In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal κ, or more generally on any set. For a cardinal κ, it can be described as a subdivision of all of its subsets into large and small sets such that κ itself is large, ∅ and all singletons {α} (with α ∈ κ) are small, complements of small sets are large and vice versa. The intersection of fewer than κ large sets is again large.[1]

It turns out that uncountable cardinals endowed with a two-valued measure are large cardinals whose existence cannot be proved from ZFC.[2]

The concept of a measurable cardinal was introduced by Stanisław Ulam in 1930.[3]

Definition

Formally, a measurable cardinal is an uncountable cardinal number κ such that there exists a κ-additive, non-trivial, 0-1-valued measure μ on the power set of κ.

Here, κ-additive means: For every λ < κ and every λ-sized set {Aβ}β<λ of pairwise disjoint subsets Aβ ⊆ κ, we have

μ(⋃β<λ Aβ) = Σβ<λ μ(Aβ).

Equivalently, κ is a measurable cardinal if and only if it is an uncountable cardinal with a κ-complete, non-principal ultrafilter. This means that the intersection of any strictly less than κ-many sets in the ultrafilter, is also in the ultrafilter.

Equivalently, κ is measurable means that it is the critical point of a non-trivial elementary embedding of the universe V into a transitive class M. This equivalence is due to Jerome Keisler and Dana Scott, and uses the ultrapower construction from model theory. Since V is a proper class, a technical problem that is not usually present when considering ultrapowers needs to be addressed, by what is now called Scott's trick.

Properties

It is trivial to note that if κ admits a non-trivial κ-additive measure, then κ must be regular. (By non-triviality and κ-additivity, any subset of cardinality less than κ must have measure 0, and then by κ-additivity again, this means that the entire set must not be a union of fewer than κ sets of cardinality less than κ.) Finally, if λ < κ, then it can't be the case that κ ≤ 2λ. If this were the case, we could identify κ with some collection of 0-1 sequences of length λ. For each position in the sequence, either the subset of sequences with 1 in that position or the subset with 0 in that position would have to have measure 1. The intersection of these λ-many measure 1 subsets would thus also have to have measure 1, but it would contain exactly one sequence, which would contradict the non-triviality of the measure. Thus, assuming the Axiom of Choice, we can infer that κ is a strong limit cardinal, which completes the proof of its inaccessibility.

Although it follows from ZFC that every measurable cardinal is inaccessible (and is ineffable, Ramsey, etc.), it is consistent with ZF that a measurable cardinal can be a successor cardinal. It follows from ZF + AD that ω1 is measurable,[4] and that every subset of ω1 contains or is disjoint from a closed and unbounded subset.

Ulam showed that the smallest cardinal κ that admits a non-trivial countably-additive two-valued measure must in fact admit a κ-additive measure. (If there were some collection of fewer than κ measure-0 subsets whose union was κ, then the induced measure on this collection would be a counterexample to the minimality of κ.) From there, one can prove (with the Axiom of Choice) that the least such cardinal must be inaccessible.

If κ is measurable and p ∈ Vκ and M (the ultrapower of V) satisfies ψ(κ, p), then the set of α < κ such that V satisfies ψ(α, p) is stationary in κ (actually a set of measure 1). In particular if ψ is a Π1 formula and V satisfies ψ(κ, p), then M satisfies it and thus V satisfies ψ(α, p) for a stationary set of α < κ. This property can be used to show that κ is a limit of most types of large cardinals that are weaker than measurable. Notice that the ultrafilter or measure witnessing that κ is measurable cannot be in M since the smallest such measurable cardinal would have to have another such below it, which is impossible.

If one starts with an elementary embedding j1 of V into M1 with critical point κ, then one can define an ultrafilter U on κ as { S ⊆ κ | κ ∈ j1(S) }. Then taking an ultrapower of V over U we can get another elementary embedding j2 of V into M2. However, it is important to remember that j2 ≠ j1. Thus other types of large cardinals such as strong cardinals may also be measurable, but not using the same embedding. It can be shown that a strong cardinal κ is measurable and also has κ-many measurable cardinals below it.

Every measurable cardinal κ is a 0-huge cardinal because κM ⊆ M, that is, every function from κ to M is in M. Consequently, Vκ+1 ⊆ M.

Implications of existence

If a measurable cardinal exists, every Σ1
2
(with respect to the analytical hierarchy) set of reals has a Lebesgue measure.[4] In particular, any non-measurable set of reals must not be Σ1
2
.

Real-valued measurable

A cardinal κ is called real-valued measurable if there is a κ-additive probability measure on the power set of κ that vanishes on singletons. Real-valued measurable cardinals were introduced by Stefan Banach (1930). Banach & Kuratowski (1929) showed that the continuum hypothesis implies that 𝔠 is not real-valued measurable. Stanislaw Ulam (1930) showed (see below for parts of Ulam's proof) that real valued measurable cardinals are weakly inaccessible (they are in fact weakly Mahlo). All measurable cardinals are real-valued measurable, and a real-valued measurable cardinal κ is measurable if and only if κ is greater than 𝔠. Thus a cardinal is measurable if and only if it is real-valued measurable and strongly inaccessible. A real valued measurable cardinal less than or equal to 𝔠 exists if and only if there is a countably additive extension of the Lebesgue measure to all sets of real numbers if and only if there is an atomless probability measure on the power set of some non-empty set.

Solovay (1971) showed that existence of measurable cardinals in ZFC, real-valued measurable cardinals in ZFC, and measurable cardinals in ZF, are equiconsistent.

Weak inaccessibility of real-valued measurable cardinals

Say that a cardinal number α is an Ulam number if[5][nb 1]

whenever

μ is an outer measure on a set X, (1)
μ(X) < ∞, (2)
μ({x}) = 0 for every xX, (3)
all A X are μ-measurable, (4)

then

if |X| ≤ α then μ(X) = 0.

Equivalently, a cardinal number α is an Ulam number if

whenever

  1. ν is an outer measure on a set Y, and F a set of pairwise disjoint subsets of Y,
  2. ν(⋃F) < ∞,
  3. ν(A) = 0 for AF,
  4. G is ν-measurable for every G ⊂ F,

then

if |F| ≤ α then ν(⋃F) = 0.

The smallest infinite cardinal 0 is an Ulam number. The class of Ulam numbers is closed under the cardinal successor operation.[6] If an infinite cardinal β has an immediate predecessor α that is an Ulam number, assume μ satisfies properties (1)–(4) with X = β. In the von Neumann model of ordinals and cardinals, for each x ∈ β, choose an injective function

fx: xα

and define the sets

U(b, a) = { x ∈ β | fx(b) = a }

Since the fx are one-to-one, the sets

U(b, a) | b ∈ β } with a ∈ α fixed
U(b, a) | a ∈ α } with b ∈ β fixed

are pairwise disjoint. By property (2) of μ, the set

b ∈ β | μ(U(b, a)) > 0 }

is countable, and hence

|{ (b, a) ∈ β × α | μ(U(b, a)) > 0 }| ≤ ℵ0α.

Thus there is a b0 such that

μ(U(b0, a)) = 0 for every a ∈ α

implying, since α is an Ulam number and using the second definition (with ν = μ and conditions (1)–(4) fulfilled),

μ(⋃aα U(b0, a)) = 0.

If b0 < x < β and fx(b0) = ax then x ∈ U(b0, ax). Thus

β = b0 ∪ {b0} ∪ ⋃aα U(b0, a)

By property (2), μ({b0}) = 0, and since |b0| ≤ α, by (4), (2) and (3), μ(b0) = 0. It follows that μ(β) = 0. The conclusion is that β is an Ulam number.

There is a similar proof[7] that the supremum of a set S of Ulam numbers with |S| an Ulam number is again a Ulam number. Together with the previous result, this implies that a cardinal that is not an Ulam number is weakly inaccessible.

See also

Notes

  1. ^ The notion in the article Ulam number is different.

Citations

  1. ^ Maddy 1988
  2. ^ Jech 2002
  3. ^ Ulam 1930
  4. ^ a b T. Jech, "The Brave New World of Determinacy" (PDF download). Bulletin of the American Mathematical Society, vol. 5, number 3, November 1981 (pp.339--349).
  5. ^ Federer 1996, Section 2.1.6
  6. ^ Federer 1996, Second part of theorem in section 2.1.6.
  7. ^ Federer 1996, First part of theorem in section 2.1.6.

References

  • Banach, Stefan (1930), "Über additive Maßfunktionen in abstrakten Mengen", Fundamenta Mathematicae, 15: 97–101, doi:10.4064/fm-15-1-97-101, ISSN 0016-2736.
  • Banach, Stefan; Kuratowski, Kazimierz (1929), "Sur une généralisation du probleme de la mesure", Fundamenta Mathematicae, 14: 127–131, doi:10.4064/fm-14-1-127-131, ISSN 0016-2736.
  • Drake, F. R. (1974), Set Theory: An Introduction to Large Cardinals (Studies in Logic and the Foundations of Mathematics; V. 76), Elsevier Science Ltd, ISBN 978-0-7204-2279-5.
  • Federer, H. (1996) [1969], Geometric Measure Theory, Classics in Mathematics (1st ed reprint ed.), Berlin, Heidelberg, New York: Springer Verlag, ISBN 978-3540606567.
  • Jech, Thomas (2002), Set theory, third millennium edition (revised and expanded), Springer, ISBN 3-540-44085-2.
  • Kanamori, Akihiro (2003), The Higher Infinite : Large Cardinals in Set Theory from Their Beginnings (2nd ed.), Springer, ISBN 3-540-00384-3.
  • Maddy, Penelope (1988), "Believing the Axioms. II", The Journal of Symbolic Logic, 53 (3): 736–764, doi:10.2307/2274569, JSTOR 2274569, S2CID 16544090. A copy of parts I and II of this article with corrections is available at the author's web page.
  • Solovay, Robert M. (1971), "Real-valued measurable cardinals", Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), Providence, R.I.: Amer. Math. Soc., pp. 397–428, MR 0290961.
  • Ulam, Stanislaw (1930), "Zur Masstheorie in der allgemeinen Mengenlehre", Fundamenta Mathematicae, 16: 140–150, doi:10.4064/fm-16-1-140-150, ISSN 0016-2736.

Read other articles:

Deputi Bidang Reformasi Birokrasi, Akuntabilitas Aparatur, dan Pengawasan Kementerian Pendayagunaan Aparatur Negara dan Reformasi Birokrasi Republik IndonesiaSusunan organisasiDeputiProf. Dr. Erwan Agus Purwanto, M.Si.[1]Kantor pusatJl. Jend. Sudirman Kav. 69 Jakarta Selatan - 12190 IndonesiaSitus webhttps://www.menpan.go.id/site/ Deputi Bidang Reformasi Birokrasi, Akuntabilitas Aparatur, dan Pengawasan merupakan unsur pelaksana pada Kementerian Pendayagunaan Aparatur Negara dan Ref…

Aksara paku Persia KunoAksara Persia Kuno (kiri), dan Prasasti Naqsh-e Rustam Darius A (bagian II, kanan) dari Darius Agung (sekitar 490 SM).Jenis aksara Semisilabis BahasaPersia KunoPeriode525 SM – 330 SMArah penulisanKiri ke kananAksara terkaitSilsilahAksara paku SumeriaAksara paku AkkadiaAksara paku Persia KunoISO 15924ISO 15924Xpeo, 030 , ​Old PersianPengkodean UnicodeNama UnicodeOld PersianRentang UnicodeU+103A0–U+103D5 Artikel ini mengandung transkripsi foneti…

Artikel ini mungkin terdampak dengan peristiwa terkini: Tragedi Stadion Kanjuruhan 2022. Informasi di halaman ini bisa berubah setiap saat. Stadion Kanjuruhan Informasi stadionPemilikPemerintah Kabupaten MalangLokasiLokasi Kepanjen, Kabupaten Malang, Jawa Timur, IndonesiaKoordinat8°9′2″LS,112°34′23″BTKonstruksiMulai pembangunan1997Dibuka9 Juni 2004 (2004-06-09)Direnovasi2010Ditutup3 Oktober 2022 (2022-10-03)Biaya pembuatanRp 35 miliarData teknisPermukaanRumput LokalPapan skor…

Football match2016 Supercopa ArgentinaEstadio Único de La Plata, venue Lanús River Plate 3 0 DateFebruary 4, 2017VenueEstadio Ciudad de La Plata, La PlataMan of the MatchLautaro Acosta[1]RefereeGermán Delfino← 2015 2017 → The 2016 Supercopa Argentina Final (officially the Supercopa Argentina 2016 Burger King for sponsorship reasons)[2] was the 5th edition of the Supercopa Argentina, an annual football match contested by the winners of the Argentine Primera Divisió…

Church in Rome, ItalyNostra Signora di Guadalupe in Mont MarioOur Lady of Guadalupe on Mount Mario (in English)Santa Mariæ de Guadalupe in Monte Malo (in Latin)FacadeClick on the map for a fullscreen view41°56′38″N 12°25′27″E / 41.94380178029619°N 12.424051974734683°E / 41.94380178029619; 12.424051974734683LocationPiazza Nostra Signora di Guadalupe 12, RomeCountryItalyDenominationRoman CatholicTraditionRoman RiteHistoryStatusTitular churchDedicationMary, moth…

Yusman Yutam Gubernur Akmil Ke-16 Informasi pribadiLahir(1940-09-13)13 September 1940Bandung, Jawa BaratMeninggal16 Juli 2014(2014-07-16) (umur 73)JakartaAlma materAkademi Militer Nasional (1965)Karier militerDinas/cabang TNI Angkatan DaratMasa dinas1960-1995Pangkat Mayor Jenderal TNISatuanInfanteri (Kopassus)Pertempuran/perangOperasi SerojaSunting kotak info • L • B Mayor Jenderal TNI (Purn.) Yusman Yustam, (13 September 1940 – 16 Juli 2014) pmerupakan se…

The following articles relate to the history, geography, geology, flora, fauna, structures and recreation in Yellowstone National Park. Yellowstone National Park history Philetus Norris Panoramic painting of Yellowstone National Park by Heinrich C. Berann, commissioned by the National Park Service Exploration Cook–Folsom–Peterson Expedition - 1869 exploration of Yellowstone river and lake Washburn–Langford–Doane Expedition - 1870 exploration of Yellowstone river, lake and Firehole river …

Chronologies Données clés 30 31 32 33 3435 36 37 38 39Décennies :0 10 20  30  40 50 60Siècles :-IIe -Ier  Ier  IIe IIIeMillénaires :-IIe -Ier  Ier  IIe IIIe Calendriers Romain Chinois Grégorien Julien Hébraïque Hindou Hégirien Persan Républicain modifier Les années 30 couvrent les années 30 à 39. Pour les années 1930 à 1939, voir Années 1930. Événements Sermon sur la montagne, gravure de Gustave Doré. Conversion sur le chemin de Dam…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2017. Masato OkuboInformasi pribadiNama lengkap Masato OkuboTanggal lahir 17 April 1986 (umur 38)Tempat lahir Tokyo, JepangPosisi bermain BekKarier senior*Tahun Tim Tampil (Gol)2005-2007 Kawasaki Frontale 2007 FC Ryukyu * Penampilan dan gol di klub senior ha…

American politician Arthur W. Coolidge56th Lieutenant Governor of MassachusettsIn officeJanuary 2, 1947 – January 6, 1949GovernorRobert F. BradfordPreceded byRobert F. BradfordSucceeded byCharles F. SullivanPresident of the Massachusetts SenateIn office1945–1946Preceded byJarvis HuntSucceeded byDonald W. NicholsonMember of the Massachusetts Senatefrom the 7th Middlesex DistrictIn office1941–1946Preceded byJoseph R. CottonSucceeded byGeorge Jelly EvansMember of the Mass…

1978 United States Senate election in New Mexico ← 1972 November 7, 1978 (1978-11-07) 1984 →   Nominee Pete Domenici Toney Anaya Party Republican Democratic Popular vote 183,442 160,045 Percentage 53.41% 46.59% County resultsDomenici:      50–60%      60–70%      70–80%Anaya:      50–60%      60–70% U.S. senator befo…

Questa voce sugli argomenti allenatori di pallacanestro sovietici e cestisti sovietici è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Lidija Alekseeva Nazionalità  Unione Sovietica Pallacanestro Ruolo Allenatrice Hall of fame Naismith Hall of Fame (2012)FIBA Hall of Fame (2007)Women's Basketball Hall of Fame (1999) CarrieraSquadre di club 1943-1946Lokomotiv Mosca1947-1957MAI MoscaNazi…

Radio station in Walsenburg–Pueblo, Colorado For the economic planning office in South Korea, see Korea Free Economic Zone. KFEZWalsenburg, ColoradoBroadcast areaPueblo, ColoradoWalsenburg, ColoradoRocky Ford, ColoradoColorado Springs, ColoradoFrequency101.3 MHzBrandingGnarly 101.3ProgrammingFormat80's hitsOwnershipOwnerEdward MagnusHistoryFirst air date2009 (as KOCK)Former call signsKWCS (2005–2008)KOCK (2008–2012)Call sign meaningK F EZ (Easy) (previous format)Technical informationFacili…

Questa voce sull'argomento cestisti montenegrini è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Nikola Pavličević Nazionalità  Montenegro Altezza 192 cm Peso 80 kg Pallacanestro Ruolo Playmaker Squadra  Studentski Centar CarrieraSquadre di club 2006-2009 Nikšić2009-2012 Lovćen Cetinje2012-2013 Sutjeska Nikšić28 (442)2013-2014 BC Vienna27 (407)2014-2016 Sutjeska N…

68th New York Film Critics Circle AwardsNew York Film Critics Circle AwardsDateJanuary 12, 2003 (2003-01-12)HighlightsBest FilmFar from Heaven, Spirited Away (Sen to Chihiro no kamikakushi) (animated)Best DirectionTodd HaynesFar from HeavenBest ActorDaniel Day-LewisGangs of New YorkBest ActressDiane LaneUnfaithful ← 67th New York Film Critics Circle Awards New York Film Critics Circle Awards 69th New York Film Critics Circle Awards → The 68th New York Film Cr…

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) 土…

Voce principale: Società Polisportiva Ars et Labor. Società Polisportiva Ars et LaborStagione 1937-1938 Sport calcio Squadra SPAL Allenatore Euro Riparbelli Presidente Angelo Vissoli Serie C1º nel girone A. Promossa in Serie B Coppa ItaliaOttavi di finale. Maggiori presenzeCampionato: Boniforti (28) Miglior marcatoreCampionato: Poggipollini (14) StadioCampo Littorio 1936-1937 1938-1939 Si invita a seguire il modello di voce Questa pagina raccoglie le informazioni riguardanti la Società …

2013 opera by Terence Blanchard ChampionOpera by Terence BlanchardThe composer and his wife Robin Burgess at the premiereLibrettistMichael CristoferLanguageEnglishPremiere15 June 2013 (2013-06-15)Loretto-Hilton Center for the Performing Arts, St. Louis Champion is an opera in two acts and ten scenes with music by Terence Blanchard and a libretto by Michael Cristofer. Based on the life of African-American welterweight boxer Emile Griffith,[1] this opera is a joint co-commis…

This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (September 2022) (Learn how and when to remove this message) Bilateral relationsFilipino–Taiwanese relations Philippines Taiwan Diplomatic missionTaipe…

В Википедии есть статьи о других людях с такой фамилией, см. Лещенко. Лев Лещенко 2019 год Основная информация Имя при рождении Лев Валерианович Лещенко Дата рождения 1 февраля 1942(1942-02-01) (82 года) Место рождения Москва, СССР[4][5] Страна  СССР→ Россия Професс…

Kembali kehalaman sebelumnya