Share to: share facebook share twitter share wa share telegram print page

Packing dimension

In mathematics, the packing dimension is one of a number of concepts that can be used to define the dimension of a subset of a metric space. Packing dimension is in some sense dual to Hausdorff dimension, since packing dimension is constructed by "packing" small open balls inside the given subset, whereas Hausdorff dimension is constructed by covering the given subset by such small open balls. The packing dimension was introduced by C. Tricot Jr. in 1982.

Definitions

Let (Xd) be a metric space with a subset S ⊆ X and let s ≥ 0 be a real number. The s-dimensional packing pre-measure of S is defined to be

Unfortunately, this is just a pre-measure and not a true measure on subsets of X, as can be seen by considering dense, countable subsets. However, the pre-measure leads to a bona fide measure: the s-dimensional packing measure of S is defined to be

i.e., the packing measure of S is the infimum of the packing pre-measures of countable covers of S.

Having done this, the packing dimension dimP(S) of S is defined analogously to the Hausdorff dimension:

An example

The following example is the simplest situation where Hausdorff and packing dimensions may differ.

Fix a sequence such that and . Define inductively a nested sequence of compact subsets of the real line as follows: Let . For each connected component of (which will necessarily be an interval of length ), delete the middle interval of length , obtaining two intervals of length , which will be taken as connected components of . Next, define . Then is topologically a Cantor set (i.e., a compact totally disconnected perfect space). For example, will be the usual middle-thirds Cantor set if .

It is possible to show that the Hausdorff and the packing dimensions of the set are given respectively by:

It follows easily that given numbers , one can choose a sequence as above such that the associated (topological) Cantor set has Hausdorff dimension and packing dimension .

Generalizations

One can consider dimension functions more general than "diameter to the s": for any function h : [0, +∞) → [0, +∞], let the packing pre-measure of S with dimension function h be given by

and define the packing measure of S with dimension function h by

The function h is said to be an exact (packing) dimension function for S if Ph(S) is both finite and strictly positive.

Properties

  • If S is a subset of n-dimensional Euclidean space Rn with its usual metric, then the packing dimension of S is equal to the upper modified box dimension of S: This result is interesting because it shows how a dimension derived from a measure (packing dimension) agrees with one derived without using a measure (the modified box dimension).

Note, however, that the packing dimension is not equal to the box dimension. For example, the set of rationals Q has box dimension one and packing dimension zero.

See also

References

  • Tricot, Claude Jr. (1982). "Two definitions of fractional dimension". Mathematical Proceedings of the Cambridge Philosophical Society. 91 (1): 57–74. doi:10.1017/S0305004100059119. S2CID 122740665. MR633256

Read other articles:

Эта статья или раздел нуждается в переработке.Пожалуйста, улучшите статью в соответствии с правилами написания статей. Основная статья: Культура СССР Музыка СССР — музыка, исполненная и написанная в период существования СССР (1922—1991). Этот вид искусства состоял из самы…

Island in Tristan da Cunha archipelago Map of Tristan da Cunha, showing Stoltenhoff Island Stoltenhoff Islandclass=notpageimage| Location of Stoltenhoff Island in the Atlantic Ocean Stoltenhoff Island is a small uninhabited island in the South Atlantic Ocean, part of the Nightingale Islands. It is the smallest of the Nightingale Islands, and is to the northwest of Nightingale Island itself. They are governed as part of Tristan da Cunha, an archipelago and part of the British overseas territory o…

الدوري الإنجليزي الممتاز للسيدات 2011 تفاصيل الموسم الدوري الإنجليزي الممتاز للسيدات  النسخة 1  البلد المملكة المتحدة  التاريخ بداية:13 أبريل 2011  نهاية:28 أغسطس 2011  المنظم الاتحاد الإنجليزي لكرة القدم  البطل نادي آرسنال للنساء  مباريات ملعوبة 56   عدد المشارك…

Species of amphibian This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (November 2013) (Learn how and when to remove this template message) Pacific tree frog Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Amphibia Order: Anura Family: Hylidae Genus: Pseudacris Speci…

Private school in Ladue, Missouri, United States; founded 1923 This article is about the school in Ladue, Missouri. For the school in Burbank, California, see John Burroughs High School. For the school in Ridgecrest, California, see Sherman E. Burroughs High School. John Burroughs SchoolAddress755 South Price RoadLadue, Missouri 63124United StatesInformationTypePrivate college-preparatory schoolReligious affiliation(s)Nonsectarian[1]Established1923; 101 years ago (1923)…

Guido Ros Nazionalità  Italia Calcio Ruolo Attaccante Carriera Squadre di club1 1914-1915 AC Milanese? (?)1919-1922 AC Libertas10+ (6+)1922-1923 Brescia19 (8) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito.   Modifica dati su Wikidata · Manuale Guido Ros (Greco Milanese, 28 marzo 1897 – ...) è stato un calciatore italiano, di ruolo attaccante. Carriera Nella stagione 19…

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Птиц…

Brantly B-2 Brantly B2 in a hover Role Light HelicopterType of aircraft Manufacturer Brantly Helicopter Corporation Designer Newby O. Brantly First flight 21 February 1953 Introduction 1958 Status In production (2011)[1] Number built 334 The Brantly B-2 is an American two-seat light helicopter produced by the Brantly Helicopter Corporation. Design and development After the failure of his first design, the Brantly B-1, Newby O. Brantly decided to design a simpler and less complicated heli…

Этернитас Пол женский  Медиафайлы на Викискладе Дупондий Адриана. На реверсе изображена Этернитас с солнцем и луной в руках. Надпись AETERNITASAVGVSTI Этернитас (лат. Aeternitas) — римская богиня, олицетворение вечности. Аналогична греческому Эону. Часто встречается на римских…

Untuk website, lihat situs web.Artikel ini bukan mengenai laman. Tangkapan layar laman web di Wikipedia. Laman web atau halaman web (bahasa Inggris: web page) atau adalah halaman utama dari suatu situs web yang diakses oleh pengguna pada awal masuk ke situs tersebut. Sebagai contoh, jika seseorang mengetik alamat internet http://id.wikipedia.org, mereka akan diarahkan langsung ke halaman utama dari alamat tersebut.[1] Vermaat di sisi lain mendefinisikan laman web sebagai setiap dokumen e…

Body of ProofGenreDrama medisDrama komediPembuatChristopher MurpheyPemeran Dana Delany Jeri Ryan John Carroll Lynch Nicholas Bishop Sonja Sohn Geoffrey Arend Windell Middlebrooks Mary Mouser Mark Valley Elyes Gabel Penggubah lagu temaDaniel LichtPenata musikTrevor Morris (musim ke-3)Negara asal Amerika SerikatBahasa asliInggrisJmlh. musim3Jmlh. episode42ProduksiProduser eksekutif Matthew Gross Christopher Murphey Sunil Nayar Krystal Houghton Ziv Diane Ademu-John Corey Miller Evan Katz…

Italian painter (1571–1610) For other uses, see Caravaggio (disambiguation). CaravaggioChalk portrait of Caravaggio, c. 1621BornMichelangelo Merisi (or Amerighi) da Caravaggio29 September 1571Milan, Duchy of Milan, Spanish Empire[1]Died18 July 1610(1610-07-18) (aged 38)Porto Ercole, State of the Presidi, Spanish EmpireEducationSimone PeterzanoKnown forPaintingNotable workList of paintings by CaravaggioPatron(s)Cardinal Francesco Maria del MonteAlof de Wignacourt Signatu…

First jet aircraft in U.S. operational service P-80 redirects here. For other uses, see P-80 (disambiguation). P-80 / F-80 Shooting Star P-80A Role Jet fighterType of aircraft National origin United States Manufacturer Lockheed Corporation Designer Clarence Kelly Johnson First flight 8 January 1944 Introduction 1945 Retired 1959 (United States) 1974 (Chile) Primary users United States Air ForceUnited States Navy Produced 1945–1950 Number built 1,715 Developed into Lockheed T-33 Shooting S…

State-owned investment bank in China Not to be confused with China Securities Holdings, a defunct Hong Kong brokerage firm. CSC Financial Co., Ltd.Trade nameChina SecuritiesCompany typePublicTraded asSSE: 601066(A share)SEHK: 6066(H share)ISINCNE100002B89IndustryFinancial servicesPredecessorChina Securities Co., Ltd.Founded2005FounderCITIC SecuritiesJianyin InvestmentHeadquartersBeijing, ChinaArea servedMainland China, Hong KongServicesInvestment bankingBrokerageAsset managementRevenue CN¥…

Species of beetle Small hive beetle Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Coleoptera Infraorder: Cucujiformia Family: Nitidulidae Genus: Aethina Species: A. tumida Binomial name Aethina tumidaMurray, 1867 Aethina tumida, commonly known as small hive beetle (SHB), is a beekeeping pest.[1] It is native to sub-Saharan Africa, but has spread to many other regions, including North America, Australia, and the Philippines. Th…

American poet and journalist Epes SargentSignature Epes Sargent (September 27, 1813– December 30, 1880) was an American editor, poet and playwright. Early life Epes Sargent was the son of Epes Sargent (1784–1853) and Hannah Dane Coffin (1787–1819),[citation needed] and was born in Gloucester, Massachusetts, on September 27, 1813, where his father was a ship master.[1] In 1818 the family moved to Roxbury, Massachusetts. From 1823 to 1829 he attended the Boston Latin School, …

The Main Event MafiaIl Main Event Mafia. Da sinistra: Booker T, Kevin Nash, Sharmell, Sting e Scott SteinerMembrivedi sotto Debutto23 ottobre 2008 Scioglimento7 novembre 2013 Anni attivi2008–2009; 2013 Progetto Wrestling Manuale La Main Event Mafia fu una stable di wrestling attiva nella Total Nonstop Action Wrestling, tra il 2008 e il 2013. Il gruppo fu composto dal leader Kurt Angle, Sting (secondo leader prima di essere estromesso), Kevin Nash, Booker T, Scott Steiner, Samoa Joe e Traci Bro…

  هذه المقالة عن وسيلة إنارة الشمعة. لمعانٍ أخرى، طالع شمعة (توضيح). شمعة الشمعة هي وسيلة للأنارة قديمة جدًا لم تفقد أهميتها مع مرور الزمن، وهي عبارة عن عمود من الشمع يمر في وسطه خيط قطني، فعند أشعال الخيط تأخذ النار بأذابة الشمع من حول الخيط وتستمر النار مشتعلة دون أتلاف …

Basilika Santa MargaretaBasilika Minor Santa Margaretabahasa Italia: Basilica di Santa MargheritaBasilika Santa MargaretaLokasiCortonaNegara ItaliaDenominasiGereja Katolik RomaSejarahDedikasiSanta Margherita dari CortonaArsitekturStatusBasilika minorStatus fungsionalAktif Interior Relikui Santa Margareta Basilika Santa Margareta (bahasa Italia: Basilica di Santa Margherita) adalah sebuah gereja basilika minor Katolik yang terletak tepat di luar kota Cortona, Toskana, Italia. Alamatn…

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (نوفمبر 2019) المعايير المستدامة والشهادات هي أعمال تطوعية، وتتم عادة عن طريق طريق تقييم طرف …

Kembali kehalaman sebelumnya