PseudocircleThe pseudocircle is the finite topological space X consisting of four distinct points {a,b,c,d } with the following non-Hausdorff topology: This topology corresponds to the partial order where the open sets are downward-closed sets. X is highly pathological from the usual viewpoint of general topology, as it fails to satisfy any separation axiom besides T0. However, from the viewpoint of algebraic topology, X has the remarkable property that it is indistinguishable from the circle S1. More precisely, the continuous map from S1 to X (where we think of S1 as the unit circle in ) given by is a weak homotopy equivalence; that is, induces an isomorphism on all homotopy groups. It follows[1] that also induces an isomorphism on singular homology and cohomology, and more generally an isomorphism on all ordinary or extraordinary homology and cohomology theories (e.g., K-theory). This can be proven using the following observation. Like S1, X is the union of two contractible open sets {a,b,c} and {a,b,d } whose intersection {a,b} is also the union of two disjoint contractible open sets {a} and {b}. So, like S1, the result follows from the groupoid Seifert-van Kampen theorem, as in the book Topology and Groupoids.[2] More generally, McCord has shown that, for any finite simplicial complex K, there is a finite topological space XK which has the same weak homotopy type as the geometric realization |K| of K. More precisely, there is a functor taking K to XK, from the category of finite simplicial complexes and simplicial maps and a natural weak homotopy equivalence from |K| to XK.[3] See also
References
Information related to Pseudocircle |