Share to: share facebook share twitter share wa share telegram print page

Relative velocity

Relative motion man on train

The relative velocity of an object B relative to an observer A, denoted (also or ), is the velocity vector of B measured in the rest frame of A. The relative speed is the vector norm of the relative velocity.

Classical mechanics

In one dimension (non-relativistic)

We begin with relative motion in the classical, (or non-relativistic, or the Newtonian approximation) that all speeds are much less than the speed of light. This limit is associated with the Galilean transformation. The figure shows a man on top of a train, at the back edge. At 1:00 pm he begins to walk forward at a walking speed of 10 km/h (kilometers per hour). The train is moving at 40 km/h. The figure depicts the man and train at two different times: first, when the journey began, and also one hour later at 2:00 pm. The figure suggests that the man is 50 km from the starting point after having traveled (by walking and by train) for one hour. This, by definition, is 50 km/h, which suggests that the prescription for calculating relative velocity in this fashion is to add the two velocities.

The diagram displays clocks and rulers to remind the reader that while the logic behind this calculation seem flawless, it makes false assumptions about how clocks and rulers behave. (See The train-and-platform thought experiment.) To recognize that this classical model of relative motion violates special relativity, we generalize the example into an equation:

where:

is the velocity of the Man relative to Earth,
is the velocity of the Man relative to the Train,
is the velocity of the Train relative to Earth.

Fully legitimate expressions for "the velocity of A relative to B" include "the velocity of A with respect to B" and "the velocity of A in the coordinate system where B is always at rest". The violation of special relativity occurs because this equation for relative velocity falsely predicts that different observers will measure different speeds when observing the motion of light. [note 1]

In two dimensions (non-relativistic)

Relative velocities between two particles in classical mechanics

The figure shows two objects A and B moving at constant velocity. The equations of motion are:

where the subscript i refers to the initial displacement (at time t equal to zero). The difference between the two displacement vectors, , represents the location of B as seen from A.

Hence:

After making the substitutions and , we have:

 

Galilean transformation (non-relativistic)

To construct a theory of relative motion consistent with the theory of special relativity, we must adopt a different convention. Continuing to work in the (non-relativistic) Newtonian limit we begin with a Galilean transformation in one dimension:[note 2]

where x' is the position as seen by a reference frame that is moving at speed, v, in the "unprimed" (x) reference frame.[note 3] Taking the differential of the first of the two equations above, we have, , and what may seem like the obvious[note 4] statement that , we have:

To recover the previous expressions for relative velocity, we assume that particle A is following the path defined by dx/dt in the unprimed reference (and hence dx′/dt′ in the primed frame). Thus and , where and refer to motion of A as seen by an observer in the unprimed and primed frame, respectively. Recall that v is the motion of a stationary object in the primed frame, as seen from the unprimed frame. Thus we have , and:

where the latter form has the desired (easily learned) symmetry.

Special relativity

As in classical mechanics, in special relativity the relative velocity is the velocity of an object or observer B in the rest frame of another object or observer A. However, unlike the case of classical mechanics, in Special Relativity, it is generally not the case that

This peculiar lack of symmetry is related to Thomas precession and the fact that two successive Lorentz transformations rotate the coordinate system. This rotation has no effect on the magnitude of a vector, and hence relative speed is symmetrical.

Parallel velocities

In the case where two objects are traveling in parallel directions, the relativistic formula for relative velocity is similar in form to the formula for addition of relativistic velocities.

The relative speed is given by the formula:

Perpendicular velocities

In the case where two objects are traveling in perpendicular directions, the relativistic relative velocity is given by the formula:

where

The relative speed is given by the formula

General case

The general formula for the relative velocity of an object or observer B in the rest frame of another object or observer A is given by the formula:[1]

where

The relative speed is given by the formula

See also

Notes

  1. ^ For example, replace the "Man" by a photon traveling at the speed of light.
  2. ^ This result is valid if all motion is restricted to the x-axis, but can be easily generalized by replacing the first equation by
  3. ^ It is easy to be confused about the minus sign before v, or whether v is defined in the prime or unprimed reference frame. It might help to visualize the fact that if x = vt, then x′ = 0, meaning that a particle that is following the path x = vt is at rest in the primed reference frame.
  4. ^ Keep in mind that, due to time dilation, dt = dt′ is valid only in the approximation that the speed is much less than that of light.

References

  1. ^ Fock 1964 The theory of Space Time and Gravitation, retrieved from https://archive.org/details/TheTheoryOfSpaceTimeGravitation

Further reading

  • Alonso & Finn, Fundamental University Physics ISBN 0-201-56518-8
  • Greenwood, Donald T, Principles of Dynamics.
  • Goodman and Warner, Dynamics.
  • Beer and Johnston, Statics and Dynamics.
  • McGraw Hill Dictionary of Physics and Mathematics.
  • Rindler, W., Essential Relativity.
  • KHURMI R.S., Mechanics, Engineering Mechanics, Statics, Dynamics

Read other articles:

Paus Liberius adalah seorang Paus, pemimpin Gereja Katolik Roma, uskup Roma dari 17 Mei 352 hingga 24 September 366. Liberius adalah Paus pertama yang tidak menjadi santo dikalangan Gereja Latin, sedangkan Gereja Ortodoks Timur mengkanonisasikan Paus Liberius sebagai santo. Didahului oleh:Julius I Paus352 - 366 Diteruskan oleh:Damasus I lbs Paus Gereja Katolik Daftar paus grafik masa jabatan orang kudus Nama Paus Abdikasi Paus Paus emeritus Antipaus Paus terpilih Abad ke-1s.d. ke-4 Petrus L…

Wikipedia bahasa Arab MesirURLhttp://arz.wikipedia.org/TipeProyek ensiklopedia internetPerdagangan ?NoRegistration (en)OpsionalLangueArab MesirLisensiCreative Commons Atribusi-BerbagiSerupa 3.0 Tanpa Adaptasi dan Lisensi Dokumentasi Bebas GNU PemilikYayasan WikimediaPembuatpjgonService entry (en)2 April 2008 Wikipedia bahasa Arab Mesir (bahasa Arab Mesir: ويكيپيديا مصرى [wikiˈbedjæ ˈmɑsˤɾi, wikiˈpidjæ], ⟨wykybydya mṣry⟩) wikipedia edisi bahasa Arab. Wi…

Academic journal This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Pochvovedenie – news · newspapers · books · scholar · JSTOR (January 2014) (Learn how and when to remove this template message) Cover of the 1941 edition Pochvovedenie (Russian: Почвоведение) is a Russian journal of soil science.[1] The first issue was published in 1899.&#…

Witi Ihimaera Witi Tame Ihimaera-Smiler ( /ˈwɪti ɪhiˈmaɪrə/ ; lahir 7 Februari 1944) adalah seorang penulis berkebangsaan Selandia Baru. Ia tumbuh besar di sebuah kota kecil bernama Waituhi dan memulai kepenulisan sejak usia remaja. Keinginannya untuk menjadi penulis adalah untuk menghilangkan kesalahpahaman terhadap orang Māori dalam sastra. Ihimaera merupakan penulis Māori yang pertama kali menerbitkan kumpulan cerita pendek dan novel. Karya cerita pendeknya terhimpun di dalam buk…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. The Marina Bay Sands SkyPark Infinity Pool di Singapura, dilihat dari sisi kolam Kolam tanpa batas adalah sebuah kolam renang atau kolam tembus pandang, dimana air mengalir pada satu tepi atau lebih, menghasilkan efek visual air tanpa batas. Kolam semacam…

Questa voce o sezione sull'argomento stadi di calcio d'Italia non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Stadio Tonino BenelliUn'immagine dello stadio Benelli durante Vis Pesaro-Ternana (stagione 1986-1987) Informazioni generaliStato Italia UbicazioneVia Campo Sportivo61100 Pesaro Inaugurazione1927 Ristrutturazione2014 ProprietarioComune di Pesaro …

Santpoort NoordGeneral informationLocationNetherlandsCoordinates52°26′34″N 4°38′21″E / 52.44278°N 4.63917°E / 52.44278; 4.63917Line(s)Haarlem–Uitgeest railwayServices Preceding station Nederlandse Spoorwegen Following station Driehuistowards Hoorn NS Sprinter 4800 Santpoort Zuidtowards Amsterdam Centraal LocationSantpoort NoordLocation within Northern RandstadShow map of Northern RandstadSantpoort NoordSantpoort Noord (Netherlands)Show map of Netherlands San…

Type of record label Boutique label redirects here. For specialty labels in home video, see Boutique Blu-ray label. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Independent record label …

LiliaceaeRentang fosil: 68–0 jtyl PreЄ Є O S D C P T J K Pg N Maastrichtium - Sekarang Lilium martagon Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Tracheophyta (tanpa takson): Angiospermae (tanpa takson): Monokotil Ordo: Liliales Famili: LiliaceaeJuss.[1] Genera lihat teks. Liliaceae atau Suku Lili-lilian adalah salah satu famili anggota tumbuhan berbunga. Menurut sistem klasifikasi APG II suku ini termasuk ke dalam bangsa Liliales, klad Monokotil. Tumbuhan dalam famili…

2007 novel by Dean Koontz For other uses, see Good Guys (disambigution). The Good Guy AuthorDean KoontzCountryUnited StatesLanguageEnglishGenreThriller, mysteryPublisherBantam BooksPublication dateMay 29, 2007Media typePrint (hardback)Pages386 pp (first edition, hardback)ISBN0-553-80481-2 (first edition, hardback)OCLC85851607Dewey Decimal813/.54 22LC ClassPS3561.O55 G66 2007 The Good Guy is a thriller novel by American author Dean Koontz, which was released on May 29, 2007. Summary Tim…

Layer of soil under the topsoil on the surface of the ground Not to be confused with Substratum. This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (June 2022) (Learn how and when to remove this message) Subsoil layer Subsoil is the layer of soil under the topsoil on the surface of the ground. Like topsoil, it is composed of a vari…

Questa voce o sezione sull'argomento arte è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Segui i suggerimenti del progetto di riferimento. 1. modello in cera 2. creazione di uno stampo La Stat…

  提示:此条目页的主题不是中華人民共和國最高領導人。 中华人民共和国 中华人民共和国政府与政治系列条目 执政党 中国共产党 党章、党旗党徽 主要负责人、领导核心 领导集体、民主集中制 意识形态、组织 以习近平同志为核心的党中央 两个维护、两个确立 全国代表大会 (二十大) 中央委员会 (二十届) 总书记:习近平 中央政治局 常务委员会 中央书记处 中…

Hungarian fencer (born 1974) The native form of this personal name is Imre Géza. This article uses Western name order when mentioning individuals. Géza ImreImre at the 2016 Paris World CupPersonal informationBorn (1974-12-23) 23 December 1974 (age 49)Budapest, HungaryNationalityHungarianHeight1.84 m (6 ft 0 in)Weight73 kg (161 lb)SportSportFencingWeaponépéeHandleft-handedClubÚjpest (–1993)Budapest SE (1993–1996)Bp. Honvéd (1996–2017)FIE rankingc…

Russian actor (born 1941) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Sergei Nikonenko – news · newspapers · books · scholar · JSTOR (August 2022) (Learn how and when to remove this message) Se…

Namto Hui RobaIr. Namto Hui Roba sebagai Anggota Dewan Perwakilan Daerah Republik Indonesia periode 2019–2024 Bupati Halmahera Barat pertamaMasa jabatan4 Februari 2006 – 4 Februari 2016PresidenSusilo Bambang YudhoyonoJoko WidodoGubernurThaib ArmaiynMadjid Husen (Plt.)Tanribali Lamo (Pj.)Abdul Ghani KasubaPendahuluGahral Syah (Pj.)Wahyudin Pora (Pj.)PenggantiAbjan Sofyan (Plh.)Danny Missy Informasi pribadiLahir23 November 1958 (umur 65)Jember, IndonesiaKebangsaanIndonesiaPar…

IC 2560 صورة IC 2560 مراقبة البيانات (حقبة حقبة) جزء من عنقود أنتاليا المجري  الكوكبة كوكبة مفرغة الهواء رمز الفهرس IC 2560 (كتالوج مفهرس)IRAS 10140-3318 (IRAS)IRAS F10140-3318 (IRAS)ESO-LV 375-0040 (European Southern Observatory Catalog و The surface photometry catalogue of the ESO-Uppsala galaxies)PGC 29993 (فهرس المجرات الرئيسية)ESO 375-4 (European Southern Observatory Catalog)…

English territorial police force Law enforcement agency Cheshire ConstabularyMottoBe safe, feel safeAgency overviewFormed20 April 1857; 167 years ago (20 April 1857)Employees2,088 Police Officers[1]168 PCSOs[1]Annual budget£169.8 million (2018–19)Jurisdictional structureOperations jurisdictionCheshire, EnglandMap of police areaSize905 square miles (2,340 km2)Population1.1 millionLegal jurisdictionEngland and WalesGoverning bodyCheshire Police and Crime Commis…

1924 novel by H. G. Wells The Dream First editionAuthorH. G. WellsIllustrator'Horosho'CountryUnited KingdomLanguageEnglishPublisherJonathan CapePublication date1924[1]Media typePrint (Hardbound and paperback)Pages320 pp[1] The Dream is a 1924[1] novel by H. G. Wells about a man from a Utopian future who dreams the entire life of an Englishman from the Victorian and Edwardian eras, Harry Mortimer Smith.[2] As in other novels of this period, in The Dream Wells …

Fought in late October 2013 at al-Yaarubiyah Battle of al-YaarubiyahPart of the al-Hasakah Governorate campaign (2012–13), the Syrian Kurdish–Islamist conflict (2013–present) and the inter-rebel conflict during the Syrian Civil WarMap of the battleDate23–27 October 2013[5][3](4 days)LocationAl-Yaarubiyah, al-Malikiyah District, al-Hasakah Governorate, Syria36°48′42″N 42°03′59″E / 36.811667°N 42.066389°E / 36.811667; 42.066389Result…

Kembali kehalaman sebelumnya