6th century - John Philoponus says that by observation, two balls of very different weights will fall at nearly the same speed. He therefore tests the equivalence principle
14th century - Nicole Oresme derives the times-squared law for uniformly accelerated change.[7] Oresme, however, regarded this discovery as a purely intellectual exercise having no relevance to the description of any natural phenomena, and consequently failed to recognise any connection with the motion of accelerating bodies[8]
16th century - Domingo de Soto suggests that bodies falling through a homogeneous medium are uniformly accelerated.[11][12] Soto, however, did not anticipate many of the qualifications and refinements contained in Galileo's theory of falling bodies. He did not, for instance, recognise, as Galileo did, that a body would fall with a strictly uniform acceleration only in a vacuum, and that it would otherwise eventually reach a uniform terminal velocity
1658 - Christiaan Huygens experimentally discovers that balls placed anywhere inside an inverted cycloid reach the lowest point of the cycloid in the same time and thereby experimentally shows that the cycloid is the tautochrone
1668 - John Wallis suggests the law of conservation of momentum
1673 - Christiaan Huygens publishes his Horologium Oscillatorium. Huygens describes in this work the first two laws of motion.[14] The book is also the first modern treatise in which a physical problem (the accelerated motion of a falling body) is idealized by a set of parameters and then analyzed mathematically.
^Sorabji, Richard (2010). "John Philoponus". Philoponus and the Rejection of Aristotelian Science (2nd ed.). Institute of Classical Studies, University of London. p. 47. ISBN978-1-905-67018-5. JSTOR44216227. OCLC878730683.
"One of the most important of al-Biruni's many texts is Shadows which he is thought to have written around 1021. [...] Shadows is an extremely important source for our knowledge of the history of mathematics, astronomy, and physics. It also contains important ideas such as the idea that acceleration is connected with non-uniform motion, using three rectangular coordinates to define a point in 3-space, and ideas that some see as anticipating the introduction of polar coordinates."
^Shlomo Pines (1964), "La dynamique d’Ibn Bajja", in Mélanges Alexandre Koyré, I, 442-468 [462, 468], Paris.
(cf. Abel B. Franco (October 2003). "Avempace, Projectile Motion, and Impetus Theory", Journal of the History of Ideas64 (4), p. 521-546 [543]: "Pines has also seen Avempace's idea of fatigue as a precursor to the Leibnizian idea of force which, according to him, underlies Newton's third law of motion and the concept of the "reaction" of forces.")
^Pines, Shlomo (1970). "Abu'l-Barakāt al-Baghdādī, Hibat Allah". Dictionary of Scientific Biography. Vol. 1. New York: Charles Scribner's Sons. pp. 26–28. ISBN0-684-10114-9.:
(cf. Abel B. Franco (October 2003). "Avempace, Projectile Motion, and Impetus Theory", Journal of the History of Ideas64 (4), p. 521-546 [528]: Hibat Allah Abu'l-Barakat al-Bagdadi (c.1080- after 1164/65) extrapolated the theory for the case of falling bodies in an original way in his Kitab al-Mu'tabar (The Book of that Which is Established through Personal Reflection). [...] This idea is, according to Pines, "the oldest negation of Aristotle's fundamental dynamic law [namely, that a constant force produces a uniform motion]," and is thus an "anticipation in a vague fashion of the fundamental law of classical mechanics [namely, that a force applied continuously produces acceleration].")
^Clagett (1968, p. 561), Nicole Oresme and the Medieval Geometry of Qualities and Motions; a treatise on the uniformity and difformity of intensities known as Tractatus de configurationibus qualitatum et motuum. Madison, WI: University of Wisconsin Press. ISBN0-299-04880-2.
^Rob Iliffe & George E. Smith (2016). The Cambridge Companion to Newton. Cambridge University Press. p. 75. ISBN9781107015463.
^Hermann, J (1710). "Unknown title". Giornale de Letterati d'Italia. 2: 447–467. Hermann, J (1710). "Extrait d'une lettre de M. Herman à M. Bernoulli datée de Padoüe le 12. Juillet 1710". Histoire de l'Académie Royale des Sciences. 1732: 519–521.
^Poinsot (1834) Theorie Nouvelle de la Rotation des Corps, Bachelier, Paris