Share to: share facebook share twitter share wa share telegram print page

Superspace

Superspace is the coordinate space of a theory exhibiting supersymmetry. In such a formulation, along with ordinary space dimensions x, y, z, ..., there are also "anticommuting" dimensions whose coordinates are labeled in Grassmann numbers rather than real numbers. The ordinary space dimensions correspond to bosonic degrees of freedom, the anticommuting dimensions to fermionic degrees of freedom.

The word "superspace" was first used by John Wheeler in an unrelated sense to describe the configuration space of general relativity; for example, this usage may be seen in his 1973 textbook Gravitation.

Informal discussion

There are several similar, but not equivalent, definitions of superspace that have been used, and continue to be used in the mathematical and physics literature. One such usage is as a synonym for super Minkowski space.[1] In this case, one takes ordinary Minkowski space, and extends it with anti-commuting fermionic degrees of freedom, taken to be anti-commuting Weyl spinors from the Clifford algebra associated to the Lorentz group. Equivalently, the super Minkowski space can be understood as the quotient of the super Poincaré algebra modulo the algebra of the Lorentz group. A typical notation for the coordinates on such a space is with the overline being the give-away that super Minkowski space is the intended space.

Superspace is also commonly used as a synonym for the super vector space. This is taken to be an ordinary vector space, together with additional coordinates taken from the Grassmann algebra, i.e. coordinate directions that are Grassmann numbers. There are several conventions for constructing a super vector space in use; two of these are described by Rogers[2] and DeWitt.[3]

A third usage of the term "superspace" is as a synonym for a supermanifold: a supersymmetric generalization of a manifold. Note that both super Minkowski spaces and super vector spaces can be taken as special cases of supermanifolds.

A fourth, and completely unrelated meaning saw a brief usage in general relativity; this is discussed in greater detail at the bottom.

Examples

Several examples are given below. The first few assume a definition of superspace as a super vector space. This is denoted as Rm|n, the Z2-graded vector space with Rm as the even subspace and Rn as the odd subspace. The same definition applies to Cm|n.

The four-dimensional examples take superspace to be super Minkowski space. Although similar to a vector space, this has many important differences: First of all, it is an affine space, having no special point denoting the origin. Next, the fermionic coordinates are taken to be anti-commuting Weyl spinors from the Clifford algebra, rather than being Grassmann numbers. The difference here is that the Clifford algebra has a considerably richer and more subtle structure than the Grassmann numbers. So, the Grassmann numbers are elements of the exterior algebra, and the Clifford algebra has an isomorphism to the exterior algebra, but its relation to the orthogonal group and the spin group, used to construct the spin representations, give it a deep geometric significance. (For example, the spin groups form a normal part of the study of Riemannian geometry,[4] quite outside the ordinary bounds and concerns of physics.)

Trivial examples

The smallest superspace is a point which contains neither bosonic nor fermionic directions. Other trivial examples include the n-dimensional real plane Rn, which is a vector space extending in n real, bosonic directions and no fermionic directions. The vector space R0|n, which is the n-dimensional real Grassmann algebra. The space R1|1 of one even and one odd direction is known as the space of dual numbers, introduced by William Clifford in 1873.

The superspace of supersymmetric quantum mechanics

Supersymmetric quantum mechanics with N supercharges is often formulated in the superspace R1|2N, which contains one real direction t identified with time and N complex Grassmann directions which are spanned by Θi and Θ*i, where i runs from 1 to N.

Consider the special case N = 1. The superspace R1|2 is a 3-dimensional vector space. A given coordinate therefore may be written as a triple (t, Θ, Θ*). The coordinates form a Lie superalgebra, in which the gradation degree of t is even and that of Θ and Θ* is odd. This means that a bracket may be defined between any two elements of this vector space, and that this bracket reduces to the commutator on two even coordinates and on one even and one odd coordinate while it is an anticommutator on two odd coordinates. This superspace is an abelian Lie superalgebra, which means that all of the aforementioned brackets vanish

where is the commutator of a and b and is the anticommutator of a and b.

One may define functions from this vector space to itself, which are called superfields. The above algebraic relations imply that, if we expand our superfield as a power series in Θ and Θ*, then we will only find terms at the zeroeth and first orders, because Θ2 = Θ*2 = 0. Therefore, superfields may be written as arbitrary functions of t multiplied by the zeroeth and first order terms in the two Grassmann coordinates

Superfields, which are representations of the supersymmetry of superspace, generalize the notion of tensors, which are representations of the rotation group of a bosonic space.

One may then define derivatives in the Grassmann directions, which take the first order term in the expansion of a superfield to the zeroeth order term and annihilate the zeroeth order term. One can choose sign conventions such that the derivatives satisfy the anticommutation relations

These derivatives may be assembled into supercharges

whose anticommutators identify them as the fermionic generators of a supersymmetry algebra

where i times the time derivative is the Hamiltonian operator in quantum mechanics. Both Q and its adjoint anticommute with themselves. The supersymmetry variation with supersymmetry parameter ε of a superfield Φ is defined to be

We can evaluate this variation using the action of Q on the superfields

Similarly one may define covariant derivatives on superspace

which anticommute with the supercharges and satisfy a wrong sign supersymmetry algebra

.

The fact that the covariant derivatives anticommute with the supercharges means the supersymmetry transformation of a covariant derivative of a superfield is equal to the covariant derivative of the same supersymmetry transformation of the same superfield. Thus, generalizing the covariant derivative in bosonic geometry which constructs tensors from tensors, the superspace covariant derivative constructs superfields from superfields.

Supersymmetric extensions of Minkowski space

N = 1 super Minkowski space

Perhaps the most studied concrete superspace in physics is super Minkowski space or sometimes written , which is the direct sum of four real bosonic dimensions and four real Grassmann dimensions (also known as fermionic dimensions or spin dimensions).[5]

In supersymmetric quantum field theories one is interested in superspaces which furnish representations of a Lie superalgebra called a supersymmetry algebra. The bosonic part of the supersymmetry algebra is the Poincaré algebra, while the fermionic part is constructed using spinors with Grassmann number valued components.

For this reason, in physical applications one considers an action of the supersymmetry algebra on the four fermionic directions of such that they transform as a spinor under the Poincaré subalgebra. In four dimensions there are three distinct irreducible 4-component spinors. There is the Majorana spinor, the left-handed Weyl spinor and the right-handed Weyl spinor. The CPT theorem implies that in a unitary, Poincaré invariant theory, which is a theory in which the S-matrix is a unitary matrix and the same Poincaré generators act on the asymptotic in-states as on the asymptotic out-states, the supersymmetry algebra must contain an equal number of left-handed and right-handed Weyl spinors. However, since each Weyl spinor has four components, this means that if one includes any Weyl spinors one must have 8 fermionic directions. Such a theory is said to have extended supersymmetry, and such models have received a lot of attention. For example, supersymmetric gauge theories with eight supercharges and fundamental matter have been solved by Nathan Seiberg and Edward Witten, see Seiberg–Witten gauge theory. However, in this subsection we are considering the superspace with four fermionic components and so no Weyl spinors are consistent with the CPT theorem.

Note: There are many sign conventions in use and this is only one of them.

Therefore the four fermionic directions transform as a Majorana spinor . We can also form a conjugate spinor

where is the charge conjugation matrix, which is defined by the property that when it conjugates a gamma matrix, the gamma matrix is negated and transposed. The first equality is the definition of while the second is a consequence of the Majorana spinor condition . The conjugate spinor plays a role similar to that of in the superspace , except that the Majorana condition, as manifested in the above equation, imposes that and are not independent.

In particular we may construct the supercharges

which satisfy the supersymmetry algebra

where is the 4-momentum operator. Again the covariant derivative is defined like the supercharge but with the second term negated and it anticommutes with the supercharges. Thus the covariant derivative of a supermultiplet is another supermultiplet.

Extended supersymmetry

It is possible to have sets of supercharges with , although this is not possible for all values of .

These supercharges generate translations in a total of spin dimensions, hence forming the superspace .

In general relativity

The word "superspace" is also used in a completely different and unrelated sense, in the book Gravitation by Misner, Thorne and Wheeler. There, it refers to the configuration space of general relativity, and, in particular, the view of gravitation as geometrodynamics, an interpretation of general relativity as a form of dynamical geometry. In modern terms, this particular idea of "superspace" is captured in one of several different formalisms used in solving the Einstein equations in a variety of settings, both theoretical and practical, such as in numerical simulations. This includes primarily the ADM formalism, as well as ideas surrounding the Hamilton–Jacobi–Einstein equation and the Wheeler–DeWitt equation.

See also

Notes

  1. ^ S. J. Gates, Jr., M. T. Grisaru, M. Roček, W. Siegel, Superspace or One Thousand and One Lessons in Supersymmetry, Benjamins Cumming Publishing (1983) ISBN 0-8053 3161-1.
  2. ^ Alice Rogers, Supermanifolds: Theory and Applications, World Scientific (2007) ISBN 978-981-3203-21-1.
  3. ^ Bryce DeWitt, Supermanifolds, Cambridge University Press (1984) ISBN 0521 42377 5.
  4. ^ Jürgen Jost, Riemannian Geometry and Geometric Analysis, Springer-Verlag (2002) ISBN 3-540-63654-4.
  5. ^ Yuval Ne'eman, Elena Eizenberg, Membranes and Other Extendons (p-branes), World Scientific, 1995, p. 5.

References

  • Duplij, Steven [in Ukrainian]; Siegel, Warren; Bagger, Jonathan, eds. (2005), Concise Encyclopedia of Supersymmetry And Noncommutative Structures in Mathematics and Physics, Berlin, New York: Springer, ISBN 978-1-4020-1338-6 (Second printing)

Read other articles:

Stasiun Hibino日比野駅Stasiun Hibino pada November 2007LokasiHigashidamen-793-3 Yugichō, Aisai-shi, Aichi-ken 496-0904JepangKoordinat35°09′48″N 136°43′41″E / 35.1633°N 136.728°E / 35.1633; 136.728Koordinat: 35°09′48″N 136°43′41″E / 35.1633°N 136.728°E / 35.1633; 136.728Operator MeitetsuJalur■ Jalur BisaiLetak6.6 kilometer dari YatomiJumlah peron1 peron pulauInformasi lainStatusTanpa stafKode stasiunTB08Situs webSitus …

JetbusLogo JetbusJetBus 2+ SHD milik bus Shantika dengan sasis Hino RK8GambaranProdusenPT Adiputro WirasejatiPerusahaan indukAdiputro GroupJuga disebutadi putroTahun produksi2011 - sekarangBodi & kerangkaJenisBodi busTipe bodiJetbusSasisScaniaMercedes-BenzHinoVolvoIsuzuJenis kendaraanBus besarBus sedangBus tingkatVarianMedium Decker (MD)High Decker (HD)High Decker Doubleglass (HDD)Super High Decker (SHD)Ultra High Decker (UHD)Super Double Decker (SDD)Medium High Decker (MHD)Dream Coach (slee…

Strada statale 50del Grappa e del Passo RolleLocalizzazioneStato Italia RegioniVenetoTrentino-Alto Adige DatiClassificazioneStrada statale InizioPonte nelle Alpi FinePredazzo Lunghezza116,000 km Provvedimento di istituzioneLegge 17/05/1928 n° 1094[1] GestoreTratte ANAS: da Ponte nelle Alpi a Fonzaso; dal 1998 la gestione del tratto confine col Veneto - Predazzo è passata alla Provincia autonoma di Trento; dal 2001 la gestione del tratto Fonzaso - confine col Trentino-Alto Adige è…

Public community college in Modesto, California, United States Modesto Junior CollegeTypePublic community collegeEstablished1921; 103 years ago (1921)PresidentSantanu BandyopadhyayStudents19,262[1]LocationModesto, California, U.S.37°39′N 121°00′W / 37.650°N 121.000°W / 37.650; -121.000Colors   Blue and whiteNicknamePiratesSporting affiliationsCalifornia Community College Athletic Association (CCCAA) – Big 8 ConferenceWebsiteww…

1952 film by George Sherman Against All Flags1952 film poster by Reynold BrownDirected byGeorge ShermanDouglas SirkWritten byJoseph HoffmanAeneas MacKenzieProduced byHoward ChristieStarringErrol FlynnMaureen O'HaraCinematographyRussell MettyEdited byFrank GrossMusic byHans J. SalterProductioncompanyUniversal-International[1]Distributed byUniversal PicturesRelease date December 24, 1952 (1952-12-24) (New York City) Running time84 minutesCountryUnited StatesLanguageEngli…

PT Bank Pembangunan DaerahJawa Barat dan BantenKantor pusat Bank BJB di BandungNama dagangbank bjbJenisPerusahaan perseroan daerah (Perseroda) publikKode emitenIDX: BJBRIndustriPerbankanDidirikan20 Mei 1961 (umur 62)KantorpusatJl. Naripan No.12 - 14, Braga, Kec. Sumur Bandung, Kota Bandung, Jawa Barat 40111 Bandung, Jawa BaratCabang1824 Jaringan kantor (2021) 1776 Terminal Perbankan Elektronik (2021)Wilayah operasiTersebar di seluruh Wilayah IndonesiaTokohkunciDireksi Yuddy Renaldi (Direktur Uta…

Stadion Utama Riau Informasi stadionNama lamaStadion PON XVIIIPemilikPemerintah Provinsi RiauOperatorPemerintah Provinsi RiauLokasiLokasiPekanbaru,Riau, IndonesiaKoordinat0°28′55″N 101°23′33″E / 0.482019°N 101.392429°E / 0.482019; 101.392429KonstruksiMulai pembangunanOktober 2009Dibuka2012Biaya pembuatanRp 1,18 triliunData teknisKapasitas44.000 penontonPemakaiPekan Olahraga Nasional 2012Kualifikasi Piala Asia AFC U22 2012Sunting kotak info • L • …

العلاقات اليابانية الباكستانية اليابان باكستان   اليابان   باكستان تعديل مصدري - تعديل   العلاقات اليابانية الباكستانية هي العلاقات الثنائية التي تجمع بين اليابان وباكستان.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه …

KhalilAl-Malik al-AshrafSultan Mesir dan SuriahBerkuasa12 November 1290 – 14 Desember 1293PendahuluAl-Mansur QalawunPenerusAn-Nasir MuhammadInformasi pribadiKelahirans. 1260anKairo, Kesultanan MamlukKematian14 Desember 1293 (usia awal 30an tahun atau lebih muda)Turuja, BuhayraWangsaQalawuniNama lengkapAl-Malik al-Ashraf Salah ad-Din Khalil ibn QalawunAyahAl-Mansur QalawunIbuQutqutiyaPermaisuriArdukinAnakDua putriAgamaIslam Al-Ashraf Salāh ad-Dīn Khalil ibn Qalawūn (Arab: الملك الأش…

Nǚwā dan Fúxī Nǚwā (8000-7500 SM) atau disebut juga sebagai Dewi Nǚwā (女娲) bermarga Fèng 凤, lahir di Chéngjì, diceritakan bernama Fèng Lǐxī (风里希). Salah satu dari Tiga Maharaja (Sān Huáng 三皇) dari suku Tionghoa, dan merupakan leluhur dari manusia, yang dalam legenda, manusia adalah keturunan dari dia dan kakaknya Fuxi (伏羲). Diceritakan bahwa dia menciptakan manusia dari tanah liat kuning, menggunakan batu lima warna menambal langit, memotong empat kaki kura-ku…

AchzivStruktur yang tersisa dari az-Zeeb (sekarang wilayah rekreasi), yang meliputi masjid, 2009Lokasi di Israel Barat LautTampilkan peta Israel Barat LautAchziv (Israel)Tampilkan peta IsraelNama alternatifAz-Zeeb (الزيب) al-Zib, al-Zaib [1]LokasiAkhzivland, IsraelWilayahDistrik UtaraKoordinat33°02′57″N 35°06′08″E / 33.04917°N 35.10222°E / 33.04917; 35.10222Koordinat: 33°02′57″N 35°06′08″E / 33.04917°N 35.10222°E&#…

Malaysia menerapkan sistem monarki terpilih, sehingga tidak memiliki garis suksesi takhta secara langsung. Dalam hal kedudukan Yang di-Pertuan Agong lowong (mangkat, tidak layak, atau mengundurkan diri), Majelis Raja-Raja akan mengadakan pertemuan untuk memilih Yang di-Pertuan Agong yang baru dari sembilan penguasa negara bagian Melayu. Sementara itu, jabatan Timbalan Yang di-Pertuan Agong (Wakil Yang di-Pertuan Agong) tidak secara langsung menjadi penerus takhta kerajaan. Pemilihan Yang di-Pert…

Country in the Horn of Africa This article is about the country. For other uses, see Ethiopia (disambiguation). This article contains several patronymic names rather than family names. These persons are addressed by their given name, and not by their inherited name. Federal Democratic Republic of Ethiopiaየኢትዮጵያ ፌዴራላዊ ዴሞክራሲያዊ ሪፐብሊክ (Amharic)Ye'ītiyop'iya Fēdēralawī Dēmokirasīyawī Rīpebilīki Flag Emblem Anthem: ወደፊት ገስግ…

Faber Grand Prix 1999 Sport Tennis Data 15 febbraio – 21 febbraio Edizione 7a Superficie Sintetico indoor Campioni Singolare Jana Novotná Doppio Serena Williams / Venus Williams 1998 2000 Il Faber Grand Prix 1999 è stato un torneo di tennis giocato sul sintetico indoor. È stata la 7ª edizione del torneo, che fa parte della categoria Tier II nell'ambito del WTA Tour 1999. Si è giocato a Hannover in Germania dal 15 al 21 febbraio 1999. Indice 1 Campionesse 1.1 Singolare 1.2 Doppio 2 Collega…

Questa voce sugli argomenti allenatori di pallacanestro brasiliani e cestisti brasiliani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Hélio Rubens Nazionalità  Brasile Altezza 185 cm Peso 76 kg Pallacanestro Ruolo PlaymakerAllenatore Termine carriera 1982 - giocatore CarrieraSquadre di club  FrancaNazionale 1967-1979 BrasileCarriera da allenatore 1989-1999 Franca1999-2002 Vasco da …

SrimpiPenari srimpiNama asliꦱꦿꦶꦩ꧀ꦥꦶInstrumenGamelanPenciptaSultan Agung dari MataramAsalKesultanan Mataram Srimpi atau Serimpi adalah jenis tari Jawa klasik dari tradisi keraton Kesultanan Mataram dan dilanjutkan pelestarian serta pengembangan sampai sekarang oleh empat istana pewarisnya di Surakarta dan Yogyakarta[1][2]. Penyajian tari pentas ini dicirikan dengan empat penari melakukan gerak gemulai yang menggambarkan kesopanan, kehalusan budi, serta kelemahlembuta…

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Ни…

American politician Cory McGarrMember of the Arizona House of Representativesfrom the 17th districtIncumbentAssumed office January 9, 2023Serving with Rachel JonesPreceded byJennifer Pawlik Personal detailsBornNew Jersey, USPolitical partyRepublicanResidenceMarana, ArizonaSignatureWebsiteCampaign Website Cory McGarr is an American politician and a Republican member of the Arizona House of Representatives elected to represent District 17 in 2022.[1] Elections 2022 …

將軍巴育·占奥差ประยุทธ์ จันทร์โอชา上將 MPCh MWM TChW 泰國樞密院議員现任就任日期2023年11月29日君主拉瑪十世議長素拉育·朱拉暖 泰國第29任總理任期2022年9月30日復職—2023年8月22日君主拉瑪十世副總理(英语:Deputy Minister of Thailand) 列表 巴威·翁素万塔那塞·巴滴玛巴功(英语:Thanasak Patimaprakorn) 威沙努·革岸(英语:Wissanu Krea-ngam) 比蒂耶通·…

Motorcycle racing on oval track This article is about the type of motorcycle racing. For the bicycle sport, see Track cycling. For the automobile sport, see Dirt track racing. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Track racing – news · newspapers · books · scholar · JSTOR (February 2009) (Learn how an…

Kembali kehalaman sebelumnya