Share to: share facebook share twitter share wa share telegram print page

Tannakian formalism

In mathematics, a Tannakian category is a particular kind of monoidal category C, equipped with some extra structure relative to a given field K. The role of such categories C is to generalise the category of linear representations of an algebraic group G defined over K. A number of major applications of the theory have been made, or might be made in pursuit of some of the central conjectures of contemporary algebraic geometry and number theory.

The name is taken from Tadao Tannaka and Tannaka–Krein duality, a theory about compact groups G and their representation theory. The theory was developed first in the school of Alexander Grothendieck. It was later reconsidered by Pierre Deligne, and some simplifications made. The pattern of the theory is that of Grothendieck's Galois theory, which is a theory about finite permutation representations of groups G which are profinite groups.

The gist of the theory is that the fiber functor Φ of the Galois theory is replaced by an exact and faithful tensor functor F from C to the category of finite-dimensional vector spaces over K. The group of natural transformations of Φ to itself, which turns out to be a profinite group in the Galois theory, is replaced by the group G of natural transformations of F into itself, that respect the tensor structure. This is in general not an algebraic group but a more general group scheme that is an inverse limit of algebraic groups (pro-algebraic group), and C is then found to be equivalent to the category of finite-dimensional linear representations of G.

More generally, it may be that fiber functors F as above only exists to categories of finite dimensional vector spaces over non-trivial extension fields L/K. In such cases the group scheme G is replaced by a gerbe on the fpqc site of Spec(K), and C is then equivalent to the category of (finite-dimensional) representations of .

Formal definition of Tannakian categories

Let K be a field and C a K-linear abelian rigid tensor (i.e., a symmetric monoidal) category such that . Then C is a Tannakian category (over K) if there is an extension field L of K such that there exists a K-linear exact and faithful tensor functor (i.e., a strong monoidal functor) F from C to the category of finite dimensional L-vector spaces. A Tannakian category over K is neutral if such exact faithful tensor functor F exists with L=K.[1]

Applications

The tannakian construction is used in relations between Hodge structure and l-adic representation. Morally[clarification needed], the philosophy of motives tells us that the Hodge structure and the Galois representation associated to an algebraic variety are related to each other. The closely-related algebraic groups Mumford–Tate group and motivic Galois group arise from categories of Hodge structures, category of Galois representations and motives through Tannakian categories. Mumford-Tate conjecture proposes that the algebraic groups arising from the Hodge strucuture and the Galois representation by means of Tannakian categories are isomorphic to one another up to connected components.

Those areas of application are closely connected to the theory of motives. Another place in which Tannakian categories have been used is in connection with the Grothendieck–Katz p-curvature conjecture; in other words, in bounding monodromy groups.

The Geometric Satake equivalence establishes an equivalence between representations of the Langlands dual group of a reductive group G and certain equivariant perverse sheaves on the affine Grassmannian associated to G. This equivalence provides a non-combinatorial construction of the Langlands dual group. It is proved by showing that the mentioned category of perverse sheaves is a Tannakian category and identifying its Tannaka dual group with .

Extensions

Wedhorn (2004) has established partial Tannaka duality results in the situation where the category is R-linear, where R is no longer a field (as in classical Tannakian duality), but certain valuation rings. Iwanari (2018) has initiated and developed Tannaka duality in the context of infinity-categories.

References

  • Deligne, Pierre (2007) [1990], "Catégories tannakiennes", The Grothendieck Festschrift, vol. II, Birkhauser, pp. 111–195, ISBN 9780817645755
  • Deligne, Pierre; Milne, James (1982), "Tannakian categories", in Deligne, Pierre; Milne, James; Ogus, Arthur; Shih, Kuang-yen (eds.), Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Mathematics, vol. 900, Springer, pp. 101–228, ISBN 978-3-540-38955-2

Further reading

  • M. Larsen and R. Pink. Determining representations from invariant dimensions. Invent. math., 102:377–389, 1990.

Read other articles:

Street in Bremen, Germany Helenenstraße Street in Bremen, GermanyHelenenstraße in 2014Former name(s)FrankenstraßeLocationStone Gate district, Bremen, GermanyCoordinates53°04′20″N 8°49′35″E / 53.072222°N 8.826389°E / 53.072222; 8.826389FromVor dem SteintorOtherKnown forProstitution The Helenenstraße is a street in the Steintor locality in the eastern suburbs of Bremen, Germany. The street was built in the 19th century and is known for prostitution. Construc…

Disambiguazione – Se stai cercando altri significati, vedi Otranto (disambigua). Questa voce o sezione sull'argomento centri abitati della Puglia non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Otrantocomune Otranto – VedutaVeduta di una parte di via dei Bastioni dal bastione dei Pelasgi LocalizzazioneStato Italia Regione Puglia Provincia Le…

Questa voce sull'argomento attori statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Morey Amsterdam (1970) Moritz Morey Amsterdam (Chicago, 14 dicembre 1908 – Los Angeles, 28 ottobre 1996) è stato un attore statunitense. Indice 1 Filmografia parziale 1.1 Cinema 1.2 Televisione 2 Altri progetti 3 Collegamenti esterni Filmografia parziale Cinema La legge del mitra (Machine-Gun Kelly), regia di …

Dalam nama Korean ini, nama keluarganya adalah Choi. Choi Yoon-soChoi Yoon-so pada tahun 2016Lahir29 November 1984 (umur 39)Jeonju, Provinsi Jeolla Utara, Korea SelatanKebangsaanKorea SelatanPendidikanUniversitas Wanita DongdukPekerjaanAktrisTahun aktif2003–sekarangAgenBig Picture Entertainment Nama KoreaHangul최윤소 Alih AksaraChoe Yun-soMcCune–ReischauerChoe Yunso Choi Yoon-so (lahir 29 November 1984) adalah aktris asal Korea Selatan.[1][2] Filmografi Film Tahu…

Home of the Dwarves in Norse Mythology This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Niðavellir – news · newspapers · books · scholar · JSTOR (June 2015) (Learn how and when to remove this template message) In Norse cosmology, Niðavellir (anglic. as Nidavellir; probable compound of O.N. Nið – new moon, t…

British and South African judge (born 1934) The Right HonourableThe Lord HoffmannGBS PCHoffmann in 2018Second Senior Lord of Appeal in OrdinaryIn office10 January 2007 – 21 April 2009MonarchElizabeth IIPreceded byThe Lord Nicholls of BirkenheadSucceeded byThe Lord Hope of CraigheadLord of Appeal in OrdinaryIn office21 February 1995 – 21 April 2009Succeeded byThe Lord Collins of MapesburyNon-Permanent Judge of the Court of Final Appeal of Hong KongIncumbentAssumed office …

Artikel ini sudah memiliki referensi, tetapi tidak disertai kutipan yang cukup. Anda dapat membantu mengembangkan artikel ini dengan menambahkan lebih banyak kutipan pada teks artikel. (Januari 2022) (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini)Five Nights at Freddy's: Security Breach Sampul dari Amerika UtaraPublikasiPlayStation 4, PlayStation 5, WindowsDecember 16, 2021Stadia1 Julo 2022Xbox One, Xbox Series X/S22 November 2022Nintendo Switch19 April 2023GenreHoror kesinta…

دوري أيرلندا الشمالية الممتاز الجهة المنظمة اتحاد أيرلندا الشمالية لكرة القدم  تاريخ الإنشاء 1890  الرياضة كرة القدم  البلد المملكة المتحدة  مستوى الدوري 1   الموقع الإلكتروني الموقع الرسمي  تعديل مصدري - تعديل   دوري أيرلندا الشمالية الممتاز (بالإنجليزية: IFA …

Kambangan hitam Jantan (atas) dan betina (bawah) Rekaman suara Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Anseriformes Famili: Anatidae Subfamili: Aythyinae Genus: Aythya Spesies: A. fuligula Nama binomial Aythya fuligula(Linnaeus, 1758) Kambangan hitam (Aythya fuligula) atau itik rumbai adalah spesies burung itik dalam famili Anatidae. Karakteristik Kambangan hitam jantan memiliki bulu…

You can help expand this article with text translated from the corresponding article in Spanish. (June 2021) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate text that appears unreliable or low-qual…

Questa voce sugli argomenti allenatori di pallacanestro statunitensi e cestisti statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti dei progetti di riferimento 1, 2. Harry Gallatin Gallatin con la maglia dei New York Knicks Nazionalità  Stati Uniti Altezza 198 cm Peso 95 kg Pallacanestro Ruolo Ala grande / centroAllenatore Termine carriera 1958 - giocatore1970 - allenatore Hall of fame Naismith Hall of Fame (1991) …

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍總…

Person appointed by a state to conduct diplomacy with another state or international organization For other uses, see Diplomat (disambiguation). French diplomat Charles Maurice de Talleyrand-Périgord is widely considered one of the most skilled diplomats of all time. A diplomat (from Ancient Greek: δίπλωμα; romanized diploma) is a person appointed by a state, intergovernmental, or nongovernmental institution to conduct diplomacy with one or more other states or international organization…

Precursors in mathematical economics, 1968 William Jack Baumol (New York, 26 febbraio 1922 – New York, 4 maggio 2017) è stato un economista statunitense, professore della New York University e della Princeton University, si occupa del mercato del lavoro e di altri fattori economici. Ha inoltre apportato considerevoli contributi alla storia del pensiero economico. È tra i 500 migliori economisti del mondo secondo la RePEc[1]. Indice 1 Biografia 2 Principali pubblicazioni 3 Note 4 Coll…

Disambiguazione – Se stai cercando l'omonima edizione per altri sport, vedi Coppa Italia 2016-2017 (disambigua). Coppa Italia 2016-2017TIM Cup 2016-2017 Competizione Coppa Italia Sport Calcio Edizione 70ª Organizzatore Lega Serie A Date dal 29 luglio 2016al 17 maggio 2017 Luogo  Italia Partecipanti 78 Sito web Legaseriea.it - Tim Cup Risultati Vincitore Juventus(12º titolo) Finalista Lazio Semi-finalisti NapoliRoma Statistiche Miglior marcatore Marco Borriello Paulo Dybala …

Load-bearing pillar in the figure of a female, Ancient Greece and later The Caryatid porch of the Erechtheion in Athens, Greece. These are now replicas. The originals are in the Acropolis Museum (with one in the British Museum). The caryatid taken by Elgin from the Erechtheion, standing in contrapposto, displayed at the British Museum A caryatid (/ˌkɛəriˈætɪd/ or /ˌkæriˈætɪd/ KAIR-ee-AT-id or KARR-ee-AT-id;[1] Ancient Greek: Καρυᾶτις, pl. Καρυάτιδες)[2&#…

Exposition universelle de 1862 La machine analytique de Babbage Général Type-BIE Universelle Catégorie Expo historique Thème Industrie et arts Surface 9 hectares Inventions machine analytique Fréquentation 6.100.000 visiteurs Participants Nombre de pays 36 Localisation Pays Royaume-Uni Ville Londres Site Kensington Exhibition Road Coordonnées 51° 30′ 01,4″ nord, 0° 10′ 33,2″ ouest Chronologie Date d'ouverture 1er mai 1862 Date de clôture 1er novembr…

Konfederasi Sepak Bola Brasil CONMEBOLDidirikan1914Kantor pusatBarra da TijucaBergabung dengan FIFA1923Bergabung dengan CONMEBOL1916PresidenJosé Maria MarinWebsitehttp://www.cbf.com.br Konfederasi Sepak Bola Brasil (bahasa Portugis: Confederação Brasileira de Futebol atau CBF) adalah badan pengendali sepak bola di Brasil. Badan ini didirikan pada 20 Agustus 1914 dengan nama Confederação Brasileira de Desportos (CBD; Konfederasi Olahraga Brasil). Presiden pertamanya adalah Álvaro Zamith…

Sikh scripture Varan Bhai Gurdasਵਾਰਾਂ ਭਾਈ ਗੁਰਦਾਸFolio of a 18th or 19th century manuscript of Varan Bhai GurdasInformationReligionSikhismAuthorBhai GurdasPeriodCirca late 16th centuryChapters40 vaars This article contains Indic text. Without proper rendering support, you may see question marks or boxes, misplaced vowels or missing conjuncts instead of Indic text. Part of a series onSikh scriptures Sikhismhistorybeliefs Sikh Guru Granth Sahib Japji Sahib Anand Sahi…

Media and entertainment conglomerate in the Philippines This article is about the Philippine media and entertainment conglomerate. For the television channel, see ABS-CBN. ABS-CBN Broadcasting Corporation redirects here. For other uses, see ABS-CBN (disambiguation). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains content that is written like an advertisement. Please hel…

Kembali kehalaman sebelumnya