Share to: share facebook share twitter share wa share telegram print page

Yang–Baxter equation

In physics, the Yang–Baxter equation (or star–triangle relation) is a consistency equation which was first introduced in the field of statistical mechanics. It depends on the idea that in some scattering situations, particles may preserve their momentum while changing their quantum internal states. It states that a matrix , acting on two out of three objects, satisfies

where is followed by a swap of the two objects. In one-dimensional quantum systems, is the scattering matrix and if it satisfies the Yang–Baxter equation then the system is integrable. The Yang–Baxter equation also shows up when discussing knot theory and the braid groups where corresponds to swapping two strands. Since one can swap three strands in two different ways, the Yang–Baxter equation enforces that both paths are the same.

Illustration of the Yang–Baxter equation

History

According to Jimbo,[1] the Yang–Baxter equation (YBE) manifested itself in the works of J. B. McGuire[2] in 1964 and C. N. Yang[3] in 1967. They considered a quantum mechanical many-body problem on a line having as the potential. Using Bethe's Ansatz techniques, they found that the scattering matrix factorized to that of the two-body problem, and determined it exactly. Here YBE arises as the consistency condition for the factorization.

In statistical mechanics, the source of YBE probably goes back to Onsager's star-triangle relation, briefly mentioned in the introduction to his solution of the Ising model[4] in 1944. The hunt for solvable lattice models has been actively pursued since then, culminating in Baxter's solution of the eight vertex model[5] in 1972.

Another line of development was the theory of factorized S-matrix in two dimensional quantum field theory.[6] Zamolodchikov pointed out[7] that the algebraic mechanics working here is the same as that in the Baxter's and others' works.

The YBE has also manifested itself in a study of Young operators in the group algebra of the symmetric group in the work of A. A. Jucys[8] in 1966.

General form of the parameter-dependent Yang–Baxter equation

Let be a unital associative algebra. In its most general form, the parameter-dependent Yang–Baxter equation is an equation for , a parameter-dependent element of the tensor product (here, and are the parameters, which usually range over the real numbers ℝ in the case of an additive parameter, or over positive real numbers+ in the case of a multiplicative parameter).

Let for , with algebra homomorphisms determined by

The general form of the Yang–Baxter equation is

for all values of , and .

Parameter-independent form

Let be a unital associative algebra. The parameter-independent Yang–Baxter equation is an equation for , an invertible element of the tensor product . The Yang–Baxter equation is

where , , and .

With respect to a basis

Often the unital associative algebra is the algebra of endomorphisms of a vector space over a field , that is, . With respect to a basis of , the components of the matrices are written , which is the component associated to the map . Omitting parameter dependence, the component of the Yang–Baxter equation associated to the map reads

Alternate form and representations of the braid group

Let be a module of , and . Let be the linear map satisfying for all . The Yang–Baxter equation then has the following alternate form in terms of on .

.

Alternatively, we can express it in the same notation as above, defining , in which case the alternate form is

In the parameter-independent special case where does not depend on parameters, the equation reduces to

,

and (if is invertible) a representation of the braid group, , can be constructed on by for . This representation can be used to determine quasi-invariants of braids, knots and links.

Symmetry

Solutions to the Yang–Baxter equation are often constrained by requiring the matrix to be invariant under the action of a Lie group . For example, in the case and , the only -invariant maps in are the identity and the permutation map . The general form of the -matrix is then for scalar functions .

The Yang–Baxter equation is homogeneous in parameter dependence in the sense that if one defines , where is a scalar function, then also satisfies the Yang–Baxter equation.

The argument space itself may have symmetry. For example translation invariance enforces that the dependence on the arguments must be dependent only on the translation-invariant difference , while scale invariance enforces that is a function of the scale-invariant ratio .

Parametrizations and example solutions

A common ansatz for computing solutions is the difference property, , where R depends only on a single (additive) parameter. Equivalently, taking logarithms, we may choose the parametrization , in which case R is said to depend on a multiplicative parameter. In those cases, we may reduce the YBE to two free parameters in a form that facilitates computations:

for all values of and . For a multiplicative parameter, the Yang–Baxter equation is

for all values of and .

The braided forms read as:

In some cases, the determinant of can vanish at specific values of the spectral parameter . Some matrices turn into a one dimensional projector at . In this case a quantum determinant can be defined [clarification needed].

Example solutions of the parameter-dependent YBE

  • A particularly simple class of parameter-dependent solutions can be obtained from solutions of the parameter-independent YBE satisfying , where the corresponding braid group representation is a permutation group representation. In this case, (equivalently, ) is a solution of the (additive) parameter-dependent YBE. In the case where and , this gives the scattering matrix of the Heisenberg XXX spin chain.
  • The -matrices of the evaluation modules of the quantum group are given explicitly by the matrix

Then the parametrized Yang-Baxter equation (in braided form) with the multiplicative parameter is satisfied:

Classification of solutions

There are broadly speaking three classes of solutions: rational, trigonometric and elliptic. These are related to quantum groups known as the Yangian, affine quantum groups and elliptic algebras respectively.

Set-theoretic Yang–Baxter equation

Set-theoretic solutions were studied by Drinfeld.[9] In this case, there is an -matrix invariant basis for the vector space in the sense that the -matrix maps the induced basis on to itself. This then induces a map given by restriction of the -matrix to the basis. The set-theoretic Yang–Baxter equation is then defined using the 'twisted' alternate form above, asserting as maps on . The equation can then be considered purely as an equation in the category of sets.

Examples

  • .
  • where , the transposition map.
  • If is a (right) shelf, then is a set-theoretic solution to the YBE.

Classical Yang–Baxter equation

Solutions to the classical YBE were studied and to some extent classified by Belavin and Drinfeld.[10] Given a 'classical -matrix' , which may also depend on a pair of arguments , the classical YBE is (suppressing parameters) This is quadratic in the -matrix, unlike the usual quantum YBE which is cubic in .

This equation emerges from so called quasi-classical solutions to the quantum YBE, in which the -matrix admits an asymptotic expansion in terms of an expansion parameter The classical YBE then comes from reading off the coefficient of the quantum YBE (and the equation trivially holds at orders ).

See also

References

  • H.-D. Doebner, J.-D. Hennig, eds, Quantum groups, Proceedings of the 8th International Workshop on Mathematical Physics, Arnold Sommerfeld Institute, Clausthal, FRG, 1989, Springer-Verlag Berlin, ISBN 3-540-53503-9.
  • Vyjayanthi Chari and Andrew Pressley, A Guide to Quantum Groups, (1994), Cambridge University Press, Cambridge ISBN 0-521-55884-0.
  • Jacques H.H. Perk and Helen Au-Yang, "Yang–Baxter Equations", (2006), arXiv:math-ph/0606053.
  1. ^ Jimbo, M. (1989). "Introduction to the Yang-Baxter Equation". International Journal of Modern Physics A. 4 (15). World Scientific: 3759–3777. Bibcode:1989IJMPA...4.3759J. doi:10.1142/S0217751X89001503.
  2. ^ McGuire, J. B. (1964-05-01). "Study of Exactly Soluble One‐Dimensional N‐Body Problems". Journal of Mathematical Physics. 5 (5). The American Institute of Physics (AIP): 622–636. Bibcode:1964JMP.....5..622M. doi:10.1063/1.1704156. ISSN 0022-2488.
  3. ^ Yang, C. N. (1967-12-04). "Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction". Physical Review Letters. 19 (23). American Physical Society (APS): 1312–1315. Bibcode:1967PhRvL..19.1312Y. doi:10.1103/PhysRevLett.19.1312. ISSN 0031-9007.
  4. ^ Onsager, L. (1944-02-01). "Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition". Physical Review. 65 (3–4). Americal Physical Society (APS): 117–149. Bibcode:1944PhRv...65..117O. doi:10.1103/PhysRev.65.117.
  5. ^ Baxter, R. J. (1972). "Partition function of the Eight-Vertex lattice model". Annals of Physics. 70 (1). Elsevier: 193–228. Bibcode:1972AnPhy..70..193B. doi:10.1016/0003-4916(72)90335-1. ISSN 0003-4916.
  6. ^ Zamolodchikov, Alexander B.; Zamolodchikov, Alexey B. (1979). "Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models". Annals of Physics. 120 (2). Elsevier: 253–291. Bibcode:1979AnPhy.120..253Z. doi:10.1016/0003-4916(79)90391-9. ISSN 0003-4916.
  7. ^ Zamolodchikov, Alexander B. (1979). "Z4-symmetric factorized S-matrix in two space-time dimensions". Comm. Math. Phys. 69 (2). Elsevier: 165–178. Bibcode:1979CMaPh..69..165Z. doi:10.1007/BF01221446. ISSN 0003-4916.
  8. ^ Jucys, A. A. (1966). "On the Young operators of the symmetric group" (PDF). Lietuvos Fizikos Rinkinys. 6. Gos. Izd-vo Polit. i Nauch. literatury.: 163–180.
  9. ^ Drinfeld, Vladimir (1992). Quantum groups : proceedings of workshops held in the Euler International Mathematical Institute, Leningrad, Fall 1990. Berlin: Springer-Verlag. doi:10.1007/BFb0101175. ISBN 978-3-540-55305-2. Retrieved 4 February 2023.
  10. ^ Belavin, A. A.; Drinfel'd, V. G. (1983). "Solutions of the classical Yang - Baxter equation for simple Lie algebras". Functional Analysis and Its Applications. 16 (3): 159–180. doi:10.1007/BF01081585. S2CID 123126711. Retrieved 4 February 2023.

Read other articles:

Kepulauan MapiaKepulauan MapiaKepulauan MapiaLokasi di wilayah PapuaTampilkan peta Papua wilayah IndonesiaKepulauan MapiaLokasi di IndonesiaTampilkan peta IndonesiaGeografiKoordinat0°54′32″N 134°18′17″E / 0.90889°N 134.30472°E / 0.90889; 134.30472Koordinat: 0°54′32″N 134°18′17″E / 0.90889°N 134.30472°E / 0.90889; 134.30472PemerintahanNegaraIndonesiaProvinsiPapuaKabupatenSupiori Kepulauan Mapia, dahulunya dikenal dengan Pulau…

HütteldorfLokasiPenzingWinaAustriaJalur (interchange)Operasi layanan Stasiun sebelumnya   U-Bahn Wina   Stasiun berikutnya Terminus Jalur U4Ober St. Veitmenuju Heiligenstadt Sunting kotak info • L • BBantuan penggunaan templat ini Hütteldorf adalah stasiun metro yang terletak di Jalur U4 pada U-Bahn Wina.[1] Stasiun ini terletak di distrik Penzing dan dibuka secara resmi pada 20 Desember 1981. Referensi ^ Line U4 Heiligenstadt - Hütteldorf. The Vienna Metro. Di…

Extinct genus of turtles GlyptopsTemporal range: Tithonian PreꞒ Ꞓ O S D C P T J K Pg N ↓ Skull and shell of Glyptops ornatus, and shell of Adocus punctatus Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Reptilia Clade: Pantestudines Clade: Testudinata Clade: †Paracryptodira Family: †Pleurosternidae Genus: †GlyptopsMarsh, 1890 Species Glyptops ornatus Marsh, 1890 Synonyms Glyptops utahensis Gaffney 1979 Glyptops plicatulus Cope, 1877 Glyptops…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Demographics of the Netherlands – news · newspapers · books · scholar · JSTOR (November 2011) (Learn how and when to remove this template message) Demographics of the NetherlandsPopulation pyramid of the Netherlands in 2023Population17,821,419 (January 2023) (67th…

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) النسبة بين الجنسين لكل بلد حسب المجموع العالمي. الأزرق يمثل أكثرية الإناث, و الأحمر يمثل أكثرية الذكور حسب ال…

Short story by E.W. Hornung The Criminologists' ClubShort story by E. W. Hornung1905 Pall Mall illustration by Cyrus CuneoCountryUnited KingdomLanguageEnglishGenre(s)Crime fictionPublicationPublisherCollier's WeeklyMedia typePrint (Magazine)Publication dateMarch 1905ChronologySeriesA. J. Raffles  The Rest Cure   The Field of Philippi The Criminologists' Club is a short story by E. W. Hornung, and features the gentleman thief A. J. Raffles, and his companion and biographer, Bunny Mander…

Silent horror film by Paul Leni The Cat and the CanaryTheatrical release posterDirected byPaul LeniScreenplay by Alfred A. Cohn Walter Anthony Story by Alfred A. Cohn Robert F. Hill Based onThe Cat and the Canaryby John WillardProduced byPaul KohnerStarring Laura La Plante Forrest Stanley Creighton Hale Flora Finch CinematographyGilbert WarrentonEdited byMartin G. CohnMusic byHugo RiesenfeldDistributed byUniversal PicturesRelease date September 9, 1927 (1927-09-09) Running time82 …

Restored fort in Manhattan, New York United States historic placeCastle Clinton National MonumentCastle GardenU.S. National Register of Historic PlacesU.S. National MonumentNew York State Register of Historic PlacesNew York City Landmark No. 0029 Photo from Historic American Buildings SurveyLocationBattery Park, Manhattan, New York CityCoordinates40°42′13″N 74°01′00″W / 40.7035°N 74.0168°W / 40.7035; -74.0168Area1 acre (0.40 ha)Built1808Architec…

Australian outlaw motorcycle gang For the club in Canada, see Rebels Motorcycle Club (Canada). Rebels Motorcycle ClubFounded1969; 55 years ago (1969), as the Confederates, by Clint JacksFounded atBrisbane, Queensland, AustraliaTypeOutlaw motorcycle clubPurposeDrug trafficking, arms dealing, extortion, prostitution, money laundering, armed robbery, murder, assault, kidnappingRegion Australia, Cambodia, Canada, Costa Rica, England, Fiji, France, Germany, Greece, Indonesia, Italy,…

Divisi Kedua Liga InggrisNegaraInggris WalesDibentuk1892Dibubarkan2004Jumlah tim24Tingkat pada piramida3 (1992–2004)2 (1892–1992)Promosi keDivisi Pertama (1892–2004)Degradasi keDivisi Ketiga (1920–1921, 1958–2004)Utara/Selatan (1921–1958)Piala domestikPiala FAPiala LigaFull Members Cup (1985–1992)Liga Inggris Trophy (1992–2004)Piala internasionalPiala Winners UEFA (1960–1985, 1990–2004)Juara bertahan ligaPlymouth Argyle(2003–2004)Klub tersuksesLeicester City Manchester City…

Voce principale: Unione Sportiva Ancona 1905. Associazione Calcio AnconaStagione 2006-2007Sport calcio Squadra Ancona Allenatore Francesco Monaco poi Marco Baroni poi Francesco Monaco Presidente Franco Fedeli Serie C116º posto nel girone B Coppa Italia Serie CPrimo turno Maggiori presenzeCampionato: Rizzato (32) Miglior marcatoreCampionato: Docente (12)Totale: Docente (15) StadioStadio del Conero 2005-2006 2007-2008 Si invita a seguire il modello di voce Questa pagina raccoglie le informaz…

Type of biological fuel This article is about mainly liquid or gaseous fuels used for transport. For other applications, see Bioenergy. A sample of biodiesel Part of a series onRenewable energy Biofuel Biogas Biomass Carbon-neutral fuel Geothermal energy Geothermal heating Geothermal power Hydroelectricity Hydropower Marine current power Marine energy Osmotic power Solar energy Solar power Sustainable biofuel Tidal power Wave power Wind power Nuclear power proposed as renewable energy Topics by …

Questa voce o sezione sull'argomento stagioni delle società calcistiche italiane non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Voce principale: Associazione Sportiva Bisceglie. Associazione Sportiva Bisceglie 1913 Don Uva Associazione Polisportiva DilettantisticaStagione 2016-2017Sport calcio Squadra …

B

  此條目介紹的是拉丁字母中的第2个字母。关于其他用法,请见「B (消歧义)」。   提示:此条目页的主题不是希腊字母Β、西里尔字母В、Б、Ъ、Ь或德语字母ẞ、ß。 BB b(见下)用法書寫系統拉丁字母英文字母ISO基本拉丁字母(英语:ISO basic Latin alphabet)类型全音素文字相关所属語言拉丁语读音方法 [b][p][ɓ](适应变体)Unicode编码U+0042, U+0062字母顺位2数值 2歷史發展…

Corbeil-EssonnesNegaraPrancisArondisemenÉvryKantonibukota 2 kantonCorbeil-Essonnes-Est, Corbeil-Essonnes-OuestAntarkomuneCA Seine-Essonne Corbeil-Essonnes merupakan sebuah komune di pinggiran selatan Paris, Prancis. Terletak 28.3 km (17.6 mil) dari pusat kota Paris. Meskipun Évry adalah ibu kota resmi Arondisemen Évry, bangunan sous-préfecture dan administrasinya terletak di dalam komune Corbeil-Essonnes. Pada abad ke-19, Corbeil Essonnes adalah pusat industri tepung; Essonnes juga memi…

Bay of the Mediterranean Sea in southern Turkey This article is about a beach in Mersin Province. For the village in Amasya Province, see Eğribük, Suluova. Seen from the northwest The beach Eğribük (also known as Barbaros bay or Tahta Liman) is a small Mediterranean bay with ruins in the beach, in south Turkey. Eğribük is in the Silifke ilçe (district) of Mersin Province at 36°16′10″N 33°48′29″E / 36.26944°N 33.80806°E / 36.26944; 33.80806 It is at the …

Cet article est une ébauche concernant un homme politique américain. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Dale Bumpers Fonctions Sénateur des États-Unispour l'Arkansas 3 janvier 1975 – 3 janvier 1999(24 ans) Prédécesseur J. William Fulbright Successeur Blanche Lincoln 38e gouverneur de l'Arkansas 12 janvier 1971 – 3 janvier 1975(3 ans, 11 mois et 22 jours) Prédécesseur Wint…

Perang ChacoBagian dari periode antar perangBolivia dan Paraguay sebelum Perang tahun 1932Tanggal15 Juni 1932 – 10 Juni 1935LokasiGran Chaco, Amerika SelatanHasil Kemenangan ParaguayPerubahanwilayah Kebanyakan wilayah Gran Chaco diberikan kepada Paraguay. Bolivia menguasai zona strategis dan pelabuhan di sungai Paraguay.Pihak terlibat  Bolivia  ParaguayTokoh dan pemimpin Jendral Hans KundtJendral Enrique Peñaranda Castillo José Félix EstigarribiaKekuatan 250 000 150 000Korban ~57.…

Mowaffak Baqer al-Rubaie, April 2007 Mowaffak Baker al-Rubaie (transliterasi alternatif Muwaffaq al Rubaie dan Muwaffaq al-Rubay'i) (Arab: موفق الربيعي, translit. Muwaffaq ar-Rubayʿī) adalah seorang politikus dan penasehat keamanan nasional Irak dalam pemerintahan Perdana Menteri Ayad Allawi, Ibrahim Al Jaafari, dan Nouri al-Maliki. Ia terpilih dalam DPR Irak pada Desember 2005 dan terpilih dalam Parlemen Irak pada 2014-2018. Referensi Pranala luar Wikiquote memiliki koleks…

Азиатский барсук Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКласс:Млеко…

Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya