Share to: share facebook share twitter share wa share telegram print page

Yttrium barium copper oxide

Yttrium barium copper oxide
Yttrium barium copper oxide structure
Yttrium barium copper oxide crystal
Names
IUPAC name
barium copper yttrium oxide
Other names
YBCO, Y123, yttrium barium cuprate
Identifiers
ChemSpider
ECHA InfoCard 100.121.379 Edit this at Wikidata
EC Number
  • 619-720-7
Properties
YBa2Cu3O7
Molar mass 666.19 g/mol
Appearance Black solid
Density 6.4 g/cm3[1][2]
Melting point >1000 °C
Insoluble
Structure
Based on the perovskite structure.
Orthorhombic
Hazards
GHS labelling:
GHS07: Exclamation mark
Warning
H302, H315, H319, H335
P261, P264, P270, P271, P280, P301+P312, P302+P352, P304+P340, P305+P351+P338, P312, P321, P330, P332+P313, P337+P313, P362, P403+P233, P405, P501
Related compounds
Cuprate superconductors
Related compounds
Yttrium(III) oxide
Barium oxide
Copper(II) oxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Yttrium barium copper oxide (YBCO) is a family of crystalline chemical compounds that display high-temperature superconductivity; it includes the first material ever discovered to become superconducting above the boiling point of liquid nitrogen [77 K (−196.2 °C; −321.1 °F)] at about 93 K (−180.2 °C; −292.3 °F).[3]

Many YBCO compounds have the general formula YBa2Cu3O7−x (also known as Y123), although materials with other Y:Ba:Cu ratios exist, such as YBa2Cu4Oy (Y124) or Y2Ba4Cu7Oy (Y247). At present, there is no singularly recognised theory for high-temperature superconductivity.

It is part of the more general group of rare-earth barium copper oxides (ReBCO) in which, instead of yttrium, other rare earths are present.

History

In April 1986, Georg Bednorz and Karl Müller, working at IBM in Zurich, discovered that certain semiconducting oxides became superconducting at relatively high temperature, in particular, a lanthanum barium copper oxide becomes superconducting at 35 K. This oxide was an oxygen-deficient perovskite-related material that proved promising and stimulated the search for related compounds with higher superconducting transition temperatures. In 1987, Bednorz and Müller were jointly awarded the Nobel Prize in Physics for this work.

Following Bednorz and Müller's discovery, a team led by Paul Ching Wu Chu at the University of Alabama in Huntsville and University of Houston discovered that YBCO has a superconducting transition critical temperature (Tc) of 93 K.[3] The first samples were Y1.2Ba0.8CuO4, but this was an average composition for two phases, a black and a green one. Workers at Bell Laboratories identified the black phase as the superconductor, determined its composition YBa2Cu3O7−δ and synthesized it in single phase[4]

YBCO was the first material found to become superconducting above 77 K, the boiling point of liquid nitrogen, whereas the majority of other superconductors require more expensive cryogens. Nonetheless, YBCO and its many related materials have yet to displace superconductors requiring liquid helium for cooling.

Synthesis

Relatively pure YBCO was first synthesized by heating a mixture of the metal carbonates at temperatures between 1000 and 1300 K.[5][6]

4 BaCO3 + Y2(CO3)3 + 6 CuCO3 + (12x) O2 → 2 YBa2Cu3O7−x + 13 CO2

Modern syntheses of YBCO use the corresponding oxides and nitrates.[6]

The superconducting properties of YBa2Cu3O7−x are sensitive to the value of x, its oxygen content. Only those materials with 0 ≤ x ≤ 0.65 are superconducting below Tc, and when x ~ 0.07, the material superconducts at the highest temperature of 95 K,[6] or in highest magnetic fields: 120 T for B perpendicular and 250 T for B parallel to the CuO2 planes.[7]

In addition to being sensitive to the stoichiometry of oxygen, the properties of YBCO are influenced by the crystallization methods used. Care must be taken to sinter YBCO. YBCO is a crystalline material, and the best superconductive properties are obtained when crystal grain boundaries are aligned by careful control of annealing and quenching temperature rates.

Numerous other methods to synthesize YBCO have developed since its discovery by Wu and his co-workers, such as chemical vapor deposition (CVD),[5][6] sol-gel,[8] and aerosol[9] methods. These alternative methods, however, still require careful sintering to produce a quality product.

However, new possibilities have been opened since the discovery that trifluoroacetic acid (TFA), a source of fluorine, prevents the formation of the undesired barium carbonate (BaCO3). Routes such as CSD (chemical solution deposition) have opened a wide range of possibilities, particularly in the preparation of long YBCO tapes.[10] This route lowers the temperature necessary to get the correct phase to around 700 °C (973 K; 1,292 °F). This, and the lack of dependence on vacuum, makes this method a very promising way to get scalable YBCO tapes.

Structure

Part of the lattice structure of yttrium barium copper oxide

YBCO crystallizes in a defect perovskite structure consisting of layers. The boundary of each layer is defined by planes of square planar CuO4 units sharing 4 vertices. The planes can sometimes be slightly puckered.[5] Perpendicular to these CuO4 planes are CuO2 ribbons sharing 2 vertices. The yttrium atoms are found between the CuO4 planes, while the barium atoms are found between the CuO2 ribbons and the CuO4 planes. This structural feature is illustrated in the figure to the right.

Coordination geometry of metal centres in YBCO[11][6]
cubic {YO8} {BaO10} square planar {CuO4} square pyramidal {CuO5} YBa2Cu3O7- unit cell
puckered Cu plane Cu ribbons
Like many type-II superconductors, YBCO can exhibit flux pinning: lines of magnetic flux may be pinned in place in a crystal, with a force required to move a piece from a particular magnetic field configuration. A piece of YBCO placed above a magnetic track can thus levitate at a fixed height.[5]

Although YBa2Cu3O7 is a well-defined chemical compound with a specific structure and stoichiometry, materials with fewer than seven oxygen atoms per formula unit are non-stoichiometric compounds. The structure of these materials depends on the oxygen content. This non-stoichiometry is denoted by the x in the chemical formula YBa2Cu3O7−x. When x = 1, the O(1) sites in the Cu(1) layer (as labelled in the unit cell) are vacant and the structure is tetragonal. The tetragonal form of YBCO is insulating and does not superconduct. Increasing the oxygen content slightly causes more of the O(1) sites to become occupied. For x < 0.65, Cu-O chains along the b axis of the crystal are formed. Elongation of the b axis changes the structure to orthorhombic, with lattice parameters of a = 3.82, b = 3.89, and c = 11.68 Å.[12] Optimum superconducting properties occur when x ~ 0.07, i.e., almost all of the O(1) sites are occupied, with few vacancies.

In experiments where other elements are substituted on the Cu and Ba[why?] sites, evidence has shown that conduction occurs in the Cu(2)O planes while the Cu(1)O(1) chains act as charge reservoirs, which provide carriers to the CuO planes. However, this model fails to address superconductivity in the homologue Pr123 (praseodymium instead of yttrium).[13] This (conduction in the copper planes) confines conductivity to the a-b planes and a large anisotropy in transport properties is observed. Along the c axis, normal conductivity is 10 times smaller than in the a-b plane. For other cuprates in the same general class, the anisotropy is even greater and inter-plane transport is highly restricted.

Furthermore, the superconducting length scales show similar anisotropy, in both penetration depth (λab ≈ 150 nm, λc ≈ 800 nm) and coherence length, (ξab ≈ 2 nm, ξc ≈ 0.4 nm). Although the coherence length in the a-b plane is 5 times greater than that along the c axis it is quite small compared to classic superconductors such as niobium (where ξ ≈ 40 nm). This modest coherence length means that the superconducting state is more susceptible to local disruptions from interfaces or defects on the order of a single unit cell, such as the boundary between twinned crystal domains. This sensitivity to small defects complicates fabricating devices with YBCO, and the material is also sensitive to degradation from humidity.

Proposed applications

Critical current (KA/cm2) vs absolute temperature (K), at different intensity of magnetic field (T) in YBCO prepared by infiltration-growth.[14]

Many possible applications of this and related high temperature superconducting materials have been discussed. For example, superconducting materials are finding use as magnets in magnetic resonance imaging, magnetic levitation, and Josephson junctions. (The most used material for power cables and magnets is BSCCO.)[citation needed]

YBCO has yet to be used in many applications involving superconductors for two primary reasons:

  • First, although single crystals of YBCO have a very high critical current density, polycrystals have a very low critical current density: only a small current can be passed while maintaining superconductivity. This problem is due to crystal grain boundaries in the material. When the grain boundary angle is greater than about 5°, the supercurrent cannot cross the boundary. The grain boundary problem can be controlled to some extent by preparing thin films via CVD or by texturing the material to align the grain boundaries.[citation needed]
  • A second problem limiting the use of this material in technological applications is associated with processing of the material. Oxide materials such as this are brittle, and forming them into superconducting wires by any conventional process does not produce a useful superconductor. (Unlike BSCCO, the powder-in-tube process does not give good results with YBCO.)[citation needed]

The most promising method developed to utilize this material involves deposition of YBCO on flexible metal tapes coated with buffering metal oxides. This is known as coated conductor. Texture (crystal plane alignment) can be introduced into the metal tape (the RABiTS process) or a textured ceramic buffer layer can be deposited, with the aid of an ion beam, on an untextured alloy substrate (the IBAD process). Subsequent oxide layers prevent diffusion of the metal from the tape into the superconductor while transferring the template for texturing the superconducting layer. Novel variants on CVD, PVD, and solution deposition techniques are used to produce long lengths of the final YBCO layer at high rates. Companies pursuing these processes include American Superconductor, Superpower (a division of Furukawa Electric), Sumitomo, Fujikura, Nexans Superconductors, Commonwealth Fusion Systems, and European Advanced Superconductors. A much larger number of research institutes have also produced YBCO tape by these methods.[citation needed]

The superconducting tape may be the key to a tokamak fusion reactor design that can achieve breakeven energy production.[15] YBCO is often categorized as a rare-earth barium copper oxide (REBCO).[16]

Surface modification

Surface modification of materials has often led to new and improved properties. Corrosion inhibition, polymer adhesion and nucleation, preparation of organic superconductor/insulator/high-Tc superconductor trilayer structures, and the fabrication of metal/insulator/superconductor tunnel junctions have been developed using surface-modified YBCO.[17]

These molecular layered materials are synthesized using cyclic voltammetry. Thus far, YBCO layered with alkylamines, arylamines, and thiols have been produced with varying stability of the molecular layer. It has been proposed that amines act as Lewis bases and bind to Lewis acidic Cu surface sites in YBa2Cu3O7 to form stable coordination bonds.

Mass production

SuperOx was able to produce over 186 miles of YBCO in 9 months for use in a fusion magnet.

In 1987, shortly after it was discovered, physicist and science author Paul Grant published in the U.K. Journal New Scientist a straightforward guide for synthesizing YBCO superconductors using widely-available equipment.[18] Thanks in part to this article and similar publications at the time, YBCO has become a popular high-temperature superconductor for use by hobbyists and in education, as the magnetic levitation effect can be easily demonstrated using liquid nitrogen as coolant.

In 2021, SuperOx, a Russian and Japanese company, developed a new manufacturing process for making YBCO wire for fusion reactors. This new wire was shown to conduct between 700 and 2000 Amps per square millimeter. The company was able to produce 186 miles of wire in 9 months, between 2019 and 2021, dramatically improving the production capacity. The company used a plasma-laser deposition process, on a electropolished substrate to make 12-mm width tape and then slit it into 3-mm tape.[19]

References

  1. ^ Knizhnik, A (2003). "Interrelation of preparation conditions, morphology, chemical reactivity and homogeneity of ceramic YBCO". Physica C: Superconductivity. 400 (1–2): 25. Bibcode:2003PhyC..400...25K. doi:10.1016/S0921-4534(03)01311-X.
  2. ^ Grekhov, I (1999). "Growth mode study of ultrathin HTSC YBCO films on YBaCuNbO buffer". Physica C: Superconductivity. 324 (1): 39. Bibcode:1999PhyC..324...39G. doi:10.1016/S0921-4534(99)00423-2.
  3. ^ a b Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.; Gao, L; Huang, Z. J.; Wang, Y. Q.; Chu, C. W. (1987). "Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure". Physical Review Letters. 58 (9): 908–910. Bibcode:1987PhRvL..58..908W. doi:10.1103/PhysRevLett.58.908. PMID 10035069.
  4. ^ R. J. Cava, B. Batlogg, R. B. van Dover, D. W. Murphy, S. Sunshine, T. Siegrist, J. P. Remeika, E. A. Rietman, S. Zahurak, and G. P. Espinosa, Physical Review Letters 58, 1676 (1987), subm. March 5, 1987, "Bulk superconductivity at 91 K in single-phase oxygen-deficient perovskite Ba2YCu3O9−δ" / and US patent 6,6635,603 (B. J. Batlogg, R. J. Cava, R. B. van Dover ) , Macilwain, C. Bell Labs win superconductivity patent. Nature 403, 121–122 (2000). https://doi.org/10.1038/35003008 |
  5. ^ a b c d Housecroft, C. E.; Sharpe, A. G. (2004). Inorganic Chemistry (2nd ed.). Prentice Hall. ISBN 978-0-13-039913-7.
  6. ^ a b c d e Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  7. ^ Sekitani, T.; Miura, N.; Ikeda, S.; Matsuda, Y.H.; Shiohara, Y. (2004). "Upper critical field for optimally-doped YBa2Cu3O7−δ". Physica B: Condensed Matter. 346–347: 319–324. Bibcode:2004PhyB..346..319S. doi:10.1016/j.physb.2004.01.098.
  8. ^ Sun, Yang-Kook & Oh, In-Hwan (1996). "Preparation of Ultrafine YBa2Cu3O7−x Superconductor Powders by the Poly(vinyl alcohol)-Assisted Sol−Gel Method". Ind. Eng. Chem. Res. 35 (11): 4296. doi:10.1021/ie950527y.
  9. ^ Zhou, Derong (1991). "Yttrium Barium Copper Oxide Superconducting Powder Generation by An Aerosol Process". University of Cincinnati: 28. Bibcode:1991PhDT........28Z. {{cite journal}}: Cite journal requires |journal= (help)
  10. ^ Casta o, O; Cavallaro, A; Palau, A; Gonz Lez, J C; Rossell, M; Puig, T; Sandiumenge, F; Mestres, N; Pi Ol, S; Pomar, A; Obradors, X (2003). "High quality YBa2Cu3O{7–x} thin films grown by trifluoroacetates metal-organic deposition". Supercond. Sci. Technol. 16 (1): 45–53. Bibcode:2003SuScT..16...45C. doi:10.1088/0953-2048/16/1/309. S2CID 250765145.
  11. ^ Williams, A.; Kwei, G. H.; Von Dreele, R. B.; Raistrick, I. D.; Bish, D. L. (1988). "Joint x-ray and neutron refinement of the structure of superconducting YBa2Cu3O7−x: Precision structure, anisotropic thermal parameters, strain, and cation disorder". Phys. Rev. B. 37 (13): 7960–7962. doi:10.1103/PhysRevB.37.7960. PMID 9944122.
  12. ^ Mook, H. A. (31 May 1993). "Polarized Neutron Determination of the Magnetic Excitations in YBa2Cu3O7". Physical Review Letters. 70 (22): 3490–3493. doi:10.1103/PhysRevLett.70.3490.
  13. ^ Oka, K (1998). "Crystal growth of superconductive PrBa2Cu3O7−y". Physica C. 300 (3–4): 200. Bibcode:1998PhyC..300..200O. doi:10.1016/S0921-4534(98)00130-0.
  14. ^ Koblischka-Veneva, Anjela; Koblischka, Michael R.; Berger, Kévin; Nouailhetas, Quentin; Douine, Bruno; Muralidhar, Miryala; Murakami, Masato (August 2019). "Comparison of Temperature and Field Dependencies of the Critical Current Densities of Bulk YBCO, MgB₂, and Iron-Based Superconductors". IEEE Transactions on Applied Superconductivity. 29 (5): 1–5. Bibcode:2019ITAS...2900932K. doi:10.1109/TASC.2019.2900932. ISSN 1558-2515. S2CID 94789535.
  15. ^ A small, modular, efficient fusion plant | MIT News. Newsoffice.mit.edu. Retrieved on 2015-12-09.
  16. ^ MIT takes a page from Tony Stark, edges closer to an ARC fusion reactor
  17. ^ Xu, F.; et al. (1998). "Surface Coordination Chemistry of YBa2Cu3O7−δ". Langmuir. 14 (22): 6505. doi:10.1021/la980143n.
  18. ^ Grant, Paul (30 July 1987). "Do-it-yourself Superconductors". New Scientist. 115 (1571). Reed Business Information: 36. Retrieved 12 January 2019.
  19. ^ Molodyk, A.; et al. (2021). "Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion". Scientific Reports. 11 (1) 2084: 2084. doi:10.1038/s41598-021-81559-z. PMC 7822827. PMID 33483553.

Read other articles:

Anna Ivanova MaslovskayaNama asalАнна Ивановна МасловскаяLahir6 Januari 1920Distrik Pastavy, Wilayah Vitebsk, Uni SovietMeninggal11 November 1980Moskwa, Uni SovietKebangsaan Uni Soviet Anna Maslovskaya (bahasa Rusia: Анна Масловская; 6 Januari 1920 – 11 November 1980) adalah seorang partisan Soviet di Republik Sosialis Soviet Belarusia pada masa pendudukan Jerman pada Perang Dunia Kedua. Ia dianugerahi gelar Pahlawan Uni Soviet pa…

Marginal sea of the northeastern Indian Ocean Andaman SeaBurma SeaLocation of Andaman Sea in the Indian OceanAndaman SeaCoordinates10°N 96°E / 10°N 96°E / 10; 96TypeSeaBasin countriesIndiaIndonesiaMalaysiaMyanmarThailandMax. length1,202 km (747 mi)Max. width647 km (402 mi)Surface area797,000 km2 (307,700 sq mi)Average depth1,096 m (3,596 ft)Max. depth4,198 m (13,773 ft)Water volume660,000 km3 (158,000…

Mögglingen Lambang kebesaranLetak Mögglingen di Ostalbkreis NegaraJermanNegara bagianBaden-WürttembergWilayahStuttgartKreisOstalbkreisPemerintahan • MayorOttmar SchweizerLuas • Total10,27 km2 (397 sq mi)Ketinggian413 m (1,355 ft)Populasi (2021-12-31)[1] • Total4.267 • Kepadatan4,2/km2 (11/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos73563Kode area telepon07174Pelat kendaraanAASitus webwww.moegglingen.de …

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مايو 2015) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إلي…

Diagram ini menunjukkan orbit satelit iregular Saturnus. Di tengah, orbit Titan, sebuah satelit yang regular, ditandai dengan warna merah sebagai perbandingan. Surtur (satelit) adalah satelit alami dari planet Saturnus. Saturnus memiliki 62 satelit, dengan 53 di antaranya telah dinamai dan hanya 13 di antaranya memiliki diameter lebih besar dari 50 kilometer. Referensi http://solarsystem.nasa.gov/planets/profile.cfm?Display=Sats&Object=Saturn Diarsipkan 2014-04-16 di Wayback Machine.

American diplomat (born 1956) William J. BurnsOfficial portrait, 20218th Director of the Central Intelligence AgencyIncumbentAssumed office March 19, 2021PresidentJoe BidenDeputyDavid S. CohenPreceded byGina Haspel17th United States Deputy Secretary of StateIn officeJuly 28, 2011 – November 3, 2014PresidentBarack ObamaPreceded byJames SteinbergSucceeded byAntony BlinkenUnited States Secretary of StateActingJanuary 20, 2009 – January 21, 2009[1]PresidentBarack Ob…

American biochemist Lorene Rogers21st President of the University of Texas at AustinIn office1974–1979Preceded byStephen Hopkins SpurrSucceeded byPeter T. Flawn Personal detailsBorn(1914-04-03)April 3, 1914Prosper, TexasDiedJanuary 11, 2009(2009-01-11) (aged 94)Dallas, TexasAlma materUniversity of North TexasUniversity of Texas at AustinProfessionBiochemistry Lorene Lane Rogers (April 3, 1914 – January 11, 2009) was an American biochemist and educator who served as the 21st Pres…

Carex specuicola Klasifikasi ilmiah Kerajaan: Plantae Divisi: Tracheophyta Kelas: Liliopsida Ordo: Poales Famili: Cyperaceae Genus: Carex Spesies: Carex specuicola Nama binomial Carex specuicolaJ.T.Howell Carex specuicola adalah spesies tumbuhan seperti rumput yang tergolong ke dalam famili Cyperaceae. Spesies ini juga merupakan bagian dari ordo Poales. Spesies Carex specuicola sendiri merupakan bagian dari genus Carex.[1] Nama ilmiah dari spesies ini pertama kali diterbitkan oleh J.T.Ho…

RBGPoster bioskopSutradaraBetsy WestJulie CohenProduserBetsy WestJulie CohenPemeran Ruth Bader Ginsburg Jane Ginsburg James Steven Ginsburg Nina Totenberg Clara Spera Gloria Steinem Penata musikMiriam CutlerSinematograferClaudia RaschkePenyuntingCarla GutierrezPerusahaanproduksi CNN Films Storyville Films Participant Media DistributorMagnolia PicturesTanggal rilis 21 Januari 2018 (2018-01-21) (Sundance) 4 Mei 2018 (2018-05-04) (Amerika Serikat) Durasi97 menitNegaraAmerika…

Lok Sabha Constituency in Kerala, India PalakkadLok Sabha constituencyMap of Palakkad Parliament ConstituencyConstituency detailsCountryIndiaRegionSouth IndiaStateKeralaAssembly constituenciesPattambi Shornur Ottapalam KongadMannarkkad Malampuzha PalakkadEstablished1957Total electors13,20,680 (2019)ReservationNoneMember of Parliament17th Lok SabhaIncumbent V. K. Sreekandan Party INCElected year2019 Palakkad Lok Sabha constituency, once knows as Palghat constituency, is one of the 20 Lok Sabha (p…

Cet article est une ébauche concernant la montagne et la Vénétie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Sorapiss Vue d'ensemble du chaînon. Géographie Altitude 3 205 m[1] Massif Dolomites (Alpes) Coordonnées 46° 30′ 25″ nord, 12° 12′ 43″ est[1] Administration Pays Italie Région Vénétie Province Belluno Géolocalisation sur la carte : Italie So…

Limits on Jewish immigration and education Part of a series onAntisemitism Part of Jewish history and discrimination History Timeline Reference Definitions IHRA definition of antisemitism Jerusalem Declaration on Antisemitism Nexus Document Three Ds Geography Argentina Australia Austria Belarus Belgium Canada Chinese Chilean Costa Rican Europe France Dreyfus affair 21st-century Germany Greece Hungary Italy Japan New Zealand Norway Pakistan Palestine Romania Russia Imperial Russia Soviet Union St…

Bagian dari seri tentangAnime dan manga Anime Sejarah Industri Animasi net orisinal Animasi video orisinal Fansub Fandub Perusahaan Seri terpanjang Daftar Manga Sejarah Pasar internasional Mangaka Dōjinshi Scanlation Alternatif Gekiga Yonkoma Penerbit Seri terlaris Seri terpanjang Daftar Kelompok demografi Anak-anak Dewasa Shōnen Shōjo Seinen Josei Genre Bara (manga gay) Harem Isekai Mahō shōjo Mecha Ryona Yaoi Yuri Lainnya Tokoh Mitsuru Adachi Fujio Akatsuka George Akiyama Hideaki Anno Hid…

Portuguese football manager and former player (born 1969) For the municipality in Brazil, see Paulo Bento, Rio Grande do Sul. In this Portuguese name, the first or maternal family name is Gomes and the second or paternal family name is Bento. Paulo Bento Bento coaching South Korea at the 2019 Asian CupPersonal informationFull name Paulo Jorge Gomes Bento[1]Date of birth (1969-06-20) 20 June 1969 (age 54)[1]Place of birth Lisbon, Portugal[1]Height 1.74 m (5&#…

Sodium selenate Names IUPAC name Sodium selenate Identifiers CAS Number 10102-23-5 N 3D model (JSmol) Interactive image ChEBI CHEBI:77775 Y ChEMBL ChEMBL114503 ChemSpider 24185 DrugBank DBSALT002579 ECHA InfoCard 100.033.169 EC Number 236-501-8 PubChem CID 25960 RTECS number VS6650000 UNII decahydrate: 0CJN4029EB Y UN number 2630 CompTox Dashboard (EPA) DTXSID5032076 InChI InChI=1S/2Na.H2O4Se/c;;1-5(2,3)4/h;;(H2,1,2,3,4)/q2*+1;/p-2Key: MHQOTKLEMKRJIR-UHFFFAOYSA-LInChI=1S…

American physician (born 1960) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Brian P. Monahan – news · newspapers · books · scholar · JSTOR (June 2023) (Learn how and when to remove this message)…

Ираклеониты — ученики гностика Ираклеона (II век). Упоминаются как особая секта Епифанием и Августином; при крещении и миропомазании они соблюдали обряд помазания елеем и при этом произносили воззвания на арамейском языке, которые должны были освободить душу от власти …

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、蘭&…

Soccer match Football matchNASL Final 1973Texas Stadium hosted the FinalEventNASL Final Dallas Tornado Philadelphia Atoms 0 2 DateAugust 25, 1973 (1973-08-25)VenueTexas Stadium, Irving, TexasRefereeBill Gallacher (Canada)Attendance18,824← 1972 1974 → NASL Final 1973 was the championship match of the 1973 season, between the expansion Philadelphia Atoms and the Dallas Tornado. The match was played on August 25, 1973 at Texas Stadium in Irving, Texas. The Philadelphia At…

Jeonbuk Hyundai Motors Football ClubCalcio Greens, General Motors Segni distintiviUniformi di gara Casa Trasferta SimboliCorvo a tre zampe Dati societariCittàJeonju Nazione Corea del Sud ConfederazioneAFC Federazione KFA CampionatoKorea League Fondazione1994 Presidente Chung Eui-Sun Allenatore Dan Petrescu StadioJeonju World Cup Stadium(43.348 posti) Sito webhttps://hyundai-motorsfc.com/ PalmarèsTitoli nazionali9 Campionati sudcoreani Trofei nazionali5 Coppe della Corea del Sud1 Supercopp…

Kembali kehalaman sebelumnya