Dans un espace topologique E, l'adhérence d'une partie X, notée X, est le « plus petit » (au sens de l'inclusion) fermé contenant X[1].
L'existence d'un tel fermé est claire[1] : il existe au moins un fermé contenant X, à savoir l'espace E lui-même ; d'autre part, l'intersection de tous les fermés contenant Xest un fermé contenant X, et est le plus petit ayant cette propriété.
Un point x de E est dit « adhérent » à X s'il appartient à X. On verra plus bas une définition équivalente de la notion de point adhérent, qui fournira donc une définition équivalente de l'adhérence.
Exemples
Une partie est fermée si et seulement si elle est égale à son adhérence[2]. Ainsi, pour la topologie discrète sur E, l'adhérence d'une partie X est égale à X. À l'opposé, pour la topologie grossière sur E, dont les fermés sont l'ensemble vide et E, l'adhérence de toute partie non vide est égale à E.
Dans un espace métrique, l'adhérence de toute boule ouverte est incluse dans la boule fermée de même centre et de même rayon. Dans un espace vectoriel normé muni de la distance ║x – y║, on a égalité. Mais dans un espace métrique quelconque, l'inclusion peut être stricte. Par exemple pour la topologie discrète sur un ensemble E, toute partie est égale à son adhérence. Or cette topologie est induite par la distance discrète (définie par : d(x, y) = 1 si x ≠ y, et d(x, x) = 0), pour laquelle les boules ouvertes de rayon 1 sont les singletons, tandis que toute boule fermée de rayon 1 est égale à E.
L'adhérence d'une intersection est incluse dans l'intersection des adhérences mais l'inclusion peut être stricte, même pour une intersection finie[5]. Par exemple dans ℝ, l'adhérence de ]–∞, 0[∩]0, +∞[ est ∅, tandis que l'intersection des adhérences est ]–∞, 0]∩[0, +∞[ = {0}.
Puisque l'adhérence est un opérateur de clôture (voir supra), une union d'adhérences est incluse dans l'adhérence de l'union[5]. L'inclusion peut être stricte. Par exemple dans ℝ, l'union de la suite de singletons {1/(n+1)} (fermés donc égaux à leurs adhérences) ne contient pas le point 0, qui est point adhérent. Pour une union finie, on a cependant égalité. En effet[5], X∪Yest un fermé contenant X∪Y donc contenant X∪Y.
Un point x de E est adhérent à X si et seulement si tout voisinage de xrencontreX[1], autrement dit : tout ouvert contenant x rencontre X.
En effet[1],[7], x n'appartient pas à X si et seulement si [il existe un fermé contenant X et pas x, c'est-à-dire si] il existe un ouvert contenant x et disjoint de X.
Espaces métriques et suites
Dans un espace E quelconque, l'adhérence d'une partie X contient toujours la fermeture séquentielle de X, c'est-à-dire que toute limite d'une suite d'éléments de X appartient à l'adhérence de X.
On dit qu'une partie X d'un espace topologique E est dense lorsque son adhérence est l'espace E tout entier. Une telle partie se caractérise donc par le fait que tout ouvert non vide en contient un point.
Intuitivement, les parties denses d'un espace sont donc des parties qui sont très grosses : on ne peut pas les éviter.
N.B. : en géométrie algébrique, ce genre de situation est très courant, car l'espace de base, le spectre d'anneau, vérifie souvent ce genre de propriétés ; en fait, cet exemple est homéomorphe à Spec(ℤ) par simple substitution des nombres premiers aux entiers non nuls.
↑D'après Choquet 1966, p. 16, la première propriété est immédiate, la deuxième vient du fait que tout fermé est égal à son adhérence, et la troisième, du fait que Y est un fermé contenant Y.