CubeSat, appelé également en France nanosatellite cubique, est un format de satellite artificiel qui est le plus couramment utilisé pour les engins de très petite taille (moins de 20 kilogrammes). Son cahier des charges définit sa forme, sa masse maximale ainsi que certaines des caractéristiques de ses composants et de son fonctionnement. Dans sa forme basique, appelée 1U, c'est un cube (d'où son appellation) de 10 × 10 × 10 centimètres de côté et dont la masse ne doit pas excéder deux kilogrammes. La majorité des CubeSats sont formés par la juxtaposition de plusieurs cubes élémentaires (de 2U jusqu'à 24U).
Le cahier des charges définissant les caractéristiques des Cubesats est rédigé en 1999 par l'Université polytechnique de Californie et l'université Stanford (États-Unis). L'objectif en est de réduire les coûts de lancement des très petits satellites et ainsi de permettre aux universités de développer et de placer en orbite leurs propres engins spatiaux. Le projet CubeSat assure la diffusion du standard et contribue à garantir l’adéquation des satellites avec la charge utile principale des lanceurs qui les mettent en orbite.
Les CubeSats sont maintenant de plus en plus utilisés pour des applications professionnelles, en particulier dans le domaine de l'observation de la Terre. Des constellations comprenant plusieurs dizaines de satellites sont déployées à partir des années 2000. En 2022, les CubeSats commencent à être utilisés pour des missions d'exploration du système solaire. La réalisation de satellites d'une taille aussi réduite a nécessité le développement d'équipements spécifiques compatibles avec la taille, la masse et la quantité d'énergie disponibles.
Le nombre de CubeSats satellisés chaque année est resté faible jusqu'en 2012. À compter de cette date, le nombre de CubeSats lancés a fortement cru et il était de 338 en 2022. Les opérateurs des lanceurs tels que Falcon 9 et PSLV proposent des vols consacrés en partie ou totalement à la mise en orbite de ce type de satellite, pour lesquels des dispositifs de déploiement spécifiques ont été mis au point. Les CubeSats 3U représentent la moitié du parc, suivis par les 6U et les 1U. Près de la moitié des CubeSats sont développés par des institutions et sociétés américaines.
Historique : création du standard CubeSat
Le projet Cubesat résulte de la collaboration entre le professeur Jordi Puig-Suari de l'Université polytechnique de Californie à San Luis Obispo et le professeur Bob Twiggs du Laboratoire de développement des systèmes de l'Université Stanford (États-Unis). Le but initial du projet était de permettre à leurs étudiants de développer des satellites aux capacités identiques aux premiers Spoutnik qu'ils seraient capables de piloter. La norme mise au point en 1999 est adoptée par les autres universités, sociétés et agences gouvernementales et devient un standard pour les nanosatellites (1 à 10 kg). Le premier CubeSat est lancé le par une fusée russe Rockot. Le projet CubeSat met aujourd'hui en relation une centaine d'universités et de sociétés privées pour le développement de nanosatellites à vocation scientifique, technologique ou pour répondre à des besoins privés ou gouvernementaux. L'Université polytechnique de Californie a la responsabilité du système de déploiement P-POD et de s'assurer que les CubeSats développés ne peuvent pas constituer un risque pour le lanceur et le reste de sa charge utile[1].
Caractéristiques techniques
Les satellites les plus simples répondant au standard CubeSat ont la forme d'un cube d'un décimètre de côté (soit un volume de précisément un litre), doivent peser moins de 2 kg[2] et utilisent des composants électroniques banalisés. Les dimensions retenues étaient considérées par ses concepteurs comme la taille minimum pour obtenir un satellite opérationnel. La forme cubique permet au satellite, dont l'orientation n'est généralement pas contrôlée, de disposer, quelle que soit celle-ci, d'énergie électrique si toutes les faces sont couvertes de cellules solaires. En définissant une norme pour les nanosatellites (satellites de 1 kg à 10 kg), le CubeSat devait permettre aux universités du monde entier de lancer dans l'espace des expériences scientifiques à un coût réduit en fixant les caractéristiques externes de ces engins spatiaux et facilitant ainsi leur installation sur les lanceurs. Dans le même objectif un système de déploiement, mis au point et construit par l'Université polytechnique de Californie, est systématiquement utilisé. Le P-POD (Poly Picosatellite Orbital Deployer) sert d'interface entre le lanceur et les CubeSats et peut contenir trois d'entre eux. Le lanceur envoie un signal électrique au P-POD qui déclenche l'ouverture de la porte et l'éjection à l'aide d'un ressort des CubeSats[3].
Les satellites peuvent être constitués de l'assemblage de plusieurs CubeSats. Par convention le CubeSat de base est désigné par l'abréviation 1U (One Unit). On trouve également des 2U (2 x 1U mises bout à bout), 3U (masse supérieure à 4 kg), 1,5 U et des 6U. D'autres tailles intermédiaires, comme celle du 4U, plus petites (jusqu'au 0,25U) ou plus grandes (jusqu'au 16U) sont utilisées en 2022. Les caractéristiques des CubeSats sont encadrés par un cahier des charges (CubeSat Design Specification), qui limite par exemple la pression de tout composant interne à 1,2 atmosphère, impose des contrôles très restrictifs sur l'emport de produits dangereux (comme les ergolshypergoliques utilisés généralement pour la propulsion) et limite l'énergie chimique stockée (dans des batteries) à 100 watts-heures[3]. L'objectif de ces contraintes est de supprimer toute source de risque pour la charge utile principale emportée par le lanceur chargé de placer en orbite le NanoSat[4].
Spécifications détaillées (extrait)
Le cahier des charges, mis à jour régulièrement par les créateurs du standard, définit précisément les caractéristiques externes, certaines caractéristiques internes pour des raisons de sécurité et les tests que les développeurs doivent satisfaire avant le lancement[5]. Ci-dessous sont listées quelques-unes des contraintes.
Sont définies les dimensions externes, les limites dans lesquelles doivent s'inscrire le centre de gravité du satellite, la masse, les caractéristiques des rails qui coulissent dans le système d'éjection.
Les dispositifs pyrotechniques sont interdits
Aucun composant ne doit être libéré dans l'espace
Les composants sous pression ne doivent pas dépasser une pression interne de 1,2 atmosphère et le facteur de sécurité doit être de 4
L'énergie chimique stockée (dans des batteries) doit être inférieure à 100 watts-heures
La mise en œuvre du système de propulsion doit nécessiter de désactiver après éjection du satellite dans l'espace trois sécurités
Le dégazement doit induire une perte de masse inférieure à 1 %
Le système de propulsion et les produits dangereux stockés doivent se conformer aux normes de sécurité définies dans AFSPC (norme de l'Armée de l'air américaine).
Le système fournissant l'énergie doit être désactivé jusqu'à son éjection pour empêcher la mise en route du satellite. Trois interrupteurs distincts doivent prévenir toute mise en marche intempestive
Les éléments déployables ne doivent être déployés que 30 minutes après l'éjection
Aucun signal radio ne doit être généré tant qu'il ne s'est pas écoulé au moins 45 minutes depuis l'éjection du satellite en orbite
Une liste des tests à réaliser est indiquée et des normes à respecter dans le domaine. L'opérateur du lanceur a toute latitude pour fixer d'autres exigences de test.
Axes de recherche
Les domaines d'utilisation des CubeSats se heurtent à la taille, qui limite à la fois l'énergie disponible, la mobilité et les capacités de la charge utile. Les industriels et les laboratoires mettent au point des équipements plus compacts et moins consommateurs d'énergie que ceux embarqués sur les satellites traditionnels.
Propulsion
Une des principales difficultés à laquelle est confrontée la conception d'un CubeSat est le recours à une propulsion capable de fournir un Delta-v suffisant malgré le faible volume disponible. Plusieurs modes de propulsion sont mis en œuvre selon les missions : propulsion à gaz froid, propulsion à ergols liquides, moteur ionique, propergol solide.
Propulsion à gaz froid
La propulsion à gaz froid est une technique de propulsion spatiale utilisées par les engins spatiaux pour effectuer de petites corrections d'orientation ou de vitesse. Un propulseur à gaz froid utilise un gaz stocké sous haute pression qui est simplement libéré dans une tuyère, laquelle permet d'orienter la poussée exercée.
Propulsion à ergols liquides
Le moteur-fusée à ergols liquides est un type de moteur-fusée utilisant des ergols liquides pour son fonctionnement. Comme les moteurs-fusées à propergol solide ou hybride, ce type de propulsion exploite l'énergie chimique contenue dans les ergols qui est libérée soit par réaction exothermique d'un comburant et d'un combustible soit par décomposition. Comme tous les moteurs-fusées, il agit en éjectant à grande vitesse la masse des gaz produits par la réaction chimique à l'opposé de la direction du déplacement souhaité et il peut fonctionner dans le vide car il ne prélève pas son comburant dans l'environnement extérieur.
Moteur ionique
Pour remplir les objectifs de certaines missions à destination d'orbite haute ou de l'espace interplanétaire, il est nécessaire de modifier la vitesse de plusieurs centaines de mètres par seconde. La plupart des types de propulsion spatiale permettant d'atteindre cette performance ont soit une masse ou un volume trop importants, soit sont trop complexes pour rentrer dans le volume d'un CubeSat. Pour propulser Lunar IceCube (lancement en 2020), un moteur ionique d'une poussée de 0,8 millinewton avec une impulsion spécifique de 2 130 secondes a été choisi. Le volume disponible est mal adapté à un réservoir pressurisé (sphérique) utilisé pour stocker le xénon ergol utilisé d'habitude pour les moteurs ioniques. Le fournisseur du moteur ionique (Busek) a choisi d'utiliser comme ergol du diiode car celui-ci est stocké à l'état solide (donc non pressurisé) tout en disposant d'une masse molaire (facteur ayant un impact directement sur le rendement du moteur) de 127 g proche de celle du xénon (130 g). La poussée est limitée par la quantité d'énergie disponible (environ 65 watts). Le CubseSat emporte 1,5 kg d'ergols qui lui permettent d'accélérer (Δv) de 1,2 km/s. Le moteur peut être orienté et faire un angle de 10° avec l'axe du satellite[6],[7].
Propergol solide
Le moteur-fusée à ergols liquides est un type de moteur-fusée utilisant des ergols liquides pour son fonctionnement. Comme les moteurs-fusées à propergol solide ou hybride, ce type de propulsion exploite l'énergie chimique contenue dans les ergols qui est libérée soit par réaction exothermique d'un comburant et d'un combustible soit par décomposition. Comme tous les moteurs-fusées, il agit en éjectant à grande vitesse la masse des gaz produits par la réaction chimique à l'opposé de la direction du déplacement souhaité et il peut fonctionner dans le vide car il ne prélève pas son comburant dans l'environnement extérieur.
Par défaut, un CubeSat après son éjection dans l'espace va se mettre à tournoyer du fait des forces dissymétriques appliquées par le système de déploiement. Certains CubeSats peuvent fonctionner sans que l'orientation soit stabilisée mais pour une majorité d'entre eux il est nécessaire que l'orientation soit à la fois stabilisée connue et maintenue à une certaine valeur : il faut par exemple maintenir des panneaux solaires orientés vers le Soleil de manière à fournir le maximum d'énergie, tourner une caméra ou un appareil scientifique vers sa cible (Terre, Soleil étoile...) ou orienter une antenne de manière à optimiser le débit de données transmises.
Les différents types d'équipement utilisés pour le contrôle d'attitude sur des satellites de plus grande taille (gyroscope, accéléromètre, viseur d'étoiles, capteur solaire, capteur d'horizon de Terre, magnéto-coupleur, roue de réaction, moteur de contrôle d'attitude) sont utilisés. Mais ils sont fortement miniaturisés pour tenir dans le volume et l'enveloppe de masse des CubeSats tout en consommant un minimum d'énergie. Leurs performances (notamment la précision du pointage) sont impactées par la réduction de leur taille. Les technologies utilisées en 2021 sont relativement matures et les performances de ces équipements ne devraient progresser que de manière réduite.
Pour les satellites circulant sur une orbite terrestre basse (champ magnétique terrestre élevé), le recours aux magnétomètres pour déterminer l'orientation du CubeSat et au magnéto-coupleur pour corriger l'orientation est bien adapté aux contraintes de masse et d'énergie des CubeSats. La roue de réaction est également souvent utilisée pour corriger l'orientation car elle fournit un couple important en ne consommant que peu d'énergie. Leur utilisation se heurte toutefois à la nécessité de les désaturer périodiquement. Les fabricants proposent des équipements remplissant l'ensemble des fonctions d'un système de contrôle d'attitude par exemple combinant un viseur d'étoiles, un magnétomètre trois axes, trois roues de réaction et trois magnéto-coupleurs.
champ de vue : ±128° précision : ±0.25° (2 angles)
Capteur numérique
Énergie
Les CubeSats utilisent des cellules solaires pour convertir l'énergie solaire en électricité. Celle-ci est ensuite stockée dans des batteries lithium-ion rechargeables qui fournissent de l'énergie pendant des éclipses ainsi que pendant les périodes de pointe[10].
Télécommunications
Cette section est vide, insuffisamment détaillée ou incomplète. Votre aide est la bienvenue ! Comment faire ?
Le faible coût de CubeSats a permis un accès sans précédent à l'espace pour les petites institutions et organisations, mais, pour la plupart des formulaires CubeSat, la portée et la puissance disponible sont limitées. En raison du tumbling et de la faible portée de puissance, les radiocommunications sont un défi pour les CubeSats.
Gestion des contraintes thermiques
Cette section est vide, insuffisamment détaillée ou incomplète. Votre aide est la bienvenue ! Comment faire ?
Coût
Le coût de fabrication et de lancement d'un satellite CubeSat 1U est d'environ 150 000 US$, mais des nouveaux opérateurs de lanceurs promettent de nouveaux prix d'environ 50 000 US$ - 90 000 US$[11]. De nombreux opérateurs de lanceurs acceptent de mettre en orbite des CubeSats en tant que charge utile secondaire. Les lancements de grappes de CubeSats sont la norme.
Développement des CubeSats
Deux facteurs contribuent à une forte croissance du nombre de CubeSats au cours des années 2010. Plusieurs sociétés offrent désormais de lancer des CubeSats 1U à 3U en tant que charge utile secondaire pour des sommes comprises entre unité|50000 et 200000 US$ (le prix dépendant de sa taille et de l'altitude visée). Certaines de ces sociétés annoncent qu'elles abaisseront les prix jusqu'à un plancher de 10 000 US$ à l'horizon 2020. Le deuxième facteur est la mise à disposition sur étagère d'équipements spatiaux à bas prix utilisables par les CubeSats. Le nombre de satellites lancés en 2017 utilisant ce standard et avec une masse comprise entre 1 et 10 kg, a atteint 287 alors qu'ils n'étaient que 77 en 2016[12]. La base de données "Nanosatellite" liste en juin 2019 2400 CubeSats et autres nanosatellites qui ont été lancés depuis 1998[13].
Nombre de CubeSats et Picosats lancés par pays (plus de cinq CubeSats lancés)[14]
Pays
Nombre
Etats-Unis
1390
Chine
85
Japon
78
Russie
55
Allemagne
50
Royaume-Uni
40
Espagne
35
Canada
33
Corée du Sud
24
Israël
23
Italie
22
France
20
Suisse
20
Australie
19
Inde
19
Pologne
13
Brésil
10
Singapour
9
Afrique du Sud
7
Qatar
7
Chili
6
Taïwan
6
Argentine
5
Mexique
5
Thaïlande
5
Une organisation s'est mise en place pour faciliter le lancement des CubeSats. Le lanceur indien PSLV et le lanceur russe Dnepr se sont fait une spécialité des lancements groupés de CubeSats : le record a été atteint le avec le lancement de 104 satellites avec une seule fusée. La PSLV-C37 de l'ISRO a mis en orbite 104 satellites 650 kg dont seulement trois n'étaient pas des CubeSats. Sur les 101 nano-satellites restants, 96 viennent des États-Unis. Les cinq autres proviennent d'Israël, du Kazakhstan, des Pays-Bas, de la Suisse et des Émirats arabes unis[15]. Des micro-lanceurs comme Epsilon sont développés dans le but de répondre à ce nouveau marché.
Les CubeSats sont initialement des satellites expérimentaux. Mais des recherches très actives sont menées pour déboucher sur des applications scientifiques ou commerciales en miniaturisant les instruments et les équipements nécessaires pour contrôler l'orientation, l'orbite et améliorer la précision du pointage. Les agences spatiales, en particulier la NASA, expérimentent l'utilisation de CubeSats pour traiter des problèmes scientifiques. Deux CubeSats 6U ont été lancés en 2018 vers Mars pour une expérience de télécommunications[16]. Des applications commerciales débutent comme la constellation de satellites Dove qui fournit des images grâce à 200 CubeSats.
RaInCube (Radar In a CubeSat) est un CubeSat 6U développé par le JPL qui teste un radar miniaturisé. Le lancement a eu lieu en 2018.
ASTERIA (Arcsecond Space Telescope Enabling Research in Astrophysics), lancé en 2017, est un CubeSat 6U du Massachusetts Institute of Technology embarquant un télescope. Il a testé avec succès un système de pointage dont la précision est de l'ordre de la seconde d'arc[17].
DeMi (Deformable Mirror Demonstration Mission) est un CubeSat 6U qui embarque un télescope destiné à tester une optique adaptative reposant sur l'utilisation de MEMS[18].
Télécommunications
Le laboratoire de Los Alamos a développé trois séries de CubeSats 1,5U — Perseus (2010), Prometheus v1 (2013), Promotheus v2 (2017-2018) — pour tester les transferts de données par nano-satellites entre des personnes équipées des terminaux portables et des stations terriennes mobiles[19].
Matériaux
LignoSat est un prototype de CubeSat 1U développé par l'université de Kyoto pour un usage radioamateur classique. Sa particularité est d'avoir une structure extérieure en bois, conçue en partenariat avec l'entreprise Sumitomo Forestry(en). Il est lancé lors de la mission SpaceX CRS-31(en)[20] et doit être déployé depuis l'ISS[21],[22]. Il est prévu d'instrumenter le satellite pour étudier la réponse du matériau bois aux contraintes spatiales[23]. Un avantage secondaire attendu est une combustion complète de la structure en fin de vie lors de la rentrée atmosphérique du satellite, en minimisant la pollution par des résidus toxiques[24],[25].
WISA Woodsat est un autre CubeSat 1U en bois, développé par l'entreprise finlandaise Arctic Astronautics dont le lancement est prévu pour 2025[26],[27].
Voile solaire
LightSail-1 est un démonstrateur technologique (CubeSat 3U) propulsé par une voile solaire. Il a été lancé le 20 mai 2015 à partir de Cap Canaveral (Floride). Ses quatre voiles sont faites d'une très fine pellicule de Mylar et ont une superficie totale de 32 m2. Ce test avait pour but de permettre de démontrer qu'une voile solaire pouvait être utilisée pour une mission principale en 2016[28].
Applications commerciales (imagerie, télécoms)
Dove est une constellation de 200 CubeSats 3U (satellites actifs courant 2018) fournissant des images avec une résolution spatiale de 3 à 5 mètres[29].
Observation de la Terre (scientifique)
Cette section doit être actualisée. (Dernière mise à jour : février 2018)
Des passages de cette section sont obsolètes ou annoncent des événements désormais passés. Améliorez-la ou discutez-en.
QB50 est une constellation d'une quarantaine de CubeSats 2U développés par différents instituts de recherche européens dont l'objectif est l'étude de la thermosphère. Chaque nanosatellite emporte un des trois instruments de mesure définis dans le cadre d'un cahier des charges : spectromètre de masse des ions neutres , expérience F de mesure de l'oxygène, Sonde de Langmuir. Cette constellation est en cours de déploiement en 2018[30].
TROPICS (Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats) est une constellation de 12 CubeSats 3U embarquant un radiomètre orientable pour fournir une mesure de la température et de l'humidité avec une résolution temporelle particulièrement fréquente. Ce projet, sélectionné par la NASA en 2016, doit être déployé en 2019[31].
Astronomie et exploration du système solaire
MinXSS (Miniature X-ray Solar Spectrometer CubeSat) (lancé le 6 décembre 2015) est un CubeSat 3U financé par la NASA qui emporte un spectromètre rayons X pour l'observation des éruptions solaires
HaloSat est le premier CubeSat destiné à l'astronomie financé par la NASA. Lancé le 21 mai 2018, il doit mesurer la masse des gaz chauds dans notre galaxie.
Colorado Ultraviolet Transit Experiment est un CubeSat 6U financé par la NASA qui doit déterminer les caractéristiques des atmosphères des exoplanètes et mesurant leur courbe spectrale dans l'ultraviolet proche. Il est lancé le 27 septembre 2021.
PicSat (2018) est un Cubesat 3U qui embarque un petit télescope pour tenter de mesurer les caractéristiques d'une exoplanète par la méthode des transits. Il est développé par plusieurs laboratoires menés par l'Observatoire de Paris[32].
MarCO (2018) satellite de format CubeSat 6U de la NASA utilisé de manière expérimentale comme relais de télécommunications dans le cadre d'une mission vers Mars[33]
SPARCS (Star-Planet Activity Research CubeSat) est un CubeSat 6U embarquant un télescope ultraviolet qui doit observer les variations d'intensité du rayonnement ultraviolet de 10 étoiles de faible masse. Le satellite est financé par la NASA et son lancement est prévu en 2021[34].
Inspire(en) (Interplanetary NanoSpacecraft Pathfinder In a Relevant Environment) sont deux CubeSat 3U de la NASA destinés à tester des fonctions mises en œuvre dans l'espace interplanétaire[35].
BurstCube est un CubeSat 6U financé par la NASA et dont le lancement a lieu le 21 mars 2024 lors de la mission SpaceX CRS-30(en) qui doit détecter les sursauts gamma.
CAPSTONE (Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment) est un CubeSat 12U financé par la NASA dont l'objectif est de tester l'orbite lunaire NRHO de la future station spatiale Lunar Gateway. Son lancement a lieu le à bord d'une fusée Electron[36].
Treize CubeSats 6U, embarqués en tant que charge utile secondaire, sont être placés dans l'espace interplanétaire par la fusée Space Launch System dans le cadre de la mission Artemis 1 organisée par la NASA et lancée le 16 novembre 2022. Parmi ces nano-satellites figurent :
Lunar IceCube, un CubeSat 6U de la NASA, qui sera le premier satellite de cette taille embarquant un moteur ionique. Celui-ci, d'une poussée d'un millinewton, a une impulsion spécifique de 2 130 secondes et utilise comme ergol de l'iodine. Le CubeSat emporte un spectromètre miniaturisé qui doit lui permettre d'analyser les volatiles à la surface de la Lune[6] ;
Lunar Flashlight, un CubeSat 6U de la NASA qui doit se placer sur une orbite particulièrement basse autour de la Lune et utiliser un laser fonctionnant en proche infrarouge pour permettre à un spectromètre embarqué d'effectuer des mesures des volatiles (dont l'eau) présents dans les régions polaires restant en permanence à l'ombre[37] ;
OMOTENASHI, un CubeSat 6U développé par l'agence spatiale japonaise (JAXA) qui doit démontrer la faisabilité d'un atterrisseur lunaire de très petite taille. Pour se poser sur la Lune l'engin utilise un moteur à propergol solide de 6 kg et un airbag (vitesse d'atterrissage 60 m/s)[40].;
EQUULEUS, un CubeSat 6U développé conjointement par l'Université de Tokyo et l'agence spatiale japonaise (JAXA) qui doit mesurer la distribution du plasma dans l'environnement spatial de la Terre et valider l'utilisation de trajectoires à faible énergie pour se déplacer à proximité du point de Lagrange L2 du système Terre-Lune[40] ;
(en) Centre de recherche Ames de la NASA, Small Spacecraft Technology - State of the Art, NASA, , 428 p. (lire en ligne)
État de l'art des technologies utilisées sur les micro-satellites et nano-satellites en 2021 ; première publication en 2013 ; Référence : NASA/TP—20210021263
(en) Akshay Reddy Tummala et Atri Dutta, « An Overview of Cube-Satellite Propulsion Technologies and Trends », Aerospace, vol. 2017-4, no 58, , p. 343-361 (DOI10.3390/aerospace4040058, lire en ligne) — Synthèse sur les modes de propulsion étudiés pour les CubeSats en 2017
(en) Evgenya L. Shkolnik, « On the verge of an astronomy CubeSat revolution », Nature Astronomy, vol. 2, , p. 374-378 (DOI10.1038/s41550-018-0438-8, lire en ligne) — La révolution introduite par les CubeSats dans le domaine de la recherche astronomique spatiale
(en) M. N. Sweeting, « Modern Small Satellites-Changing the Economics of Space », Proceedings of the IEEE,, vol. 106, no 3, , p. 343-361 (DOI10.1109/JPROC.2018.2806218, lire en ligne) — Développement des satellites de petites tailles (état des lieux en 2018)
(en) Arash Mehrparvar, CubeSat Design Specification rev 13, , 42 p. (lire en ligne)
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Nila PennaePoster rilis teatrikalSutradaraV. ThamilazhaganProduserV. ThamilazhaganDitulis olehV. ThamilazhaganR. P. Viswam (dialog)SkenarioV. ThamilazhaganPemeranAnandDivya BharatiVenniradai MoorthyJanagarajPenata musikVidyasagarSinematograferA. V.…
Emil LudwigLahirEmil Cohn25 Januari 1881Breslau, Kerajaan Prusia, Kekaisaran JermanMeninggal17 September 1948(1948-09-17) (umur 67)Ascona, SwissKebangsaanJermanWarga negaraJerman dan SwissPekerjaanPenulis, wartawanDikenal atasMenulis biografi Emil Ludwig (25 Januari 1881–17 September 1948) adalah penulis berkewarganegaraan ganda Jerman-Swiss yang dikenal lewat karya biografi serta studinya mengenai sejumlah tokoh besar dalam sejarah.[1] Biografi Lahir dengan nama Emil Cohn di Bres…
Final Piala FA 2017TurnamenPiala FA 2016–2017 Arsenal Chelsea 2 1 Tanggal27 Mei 2017StadionStadion Wembley, LondonPemain Terbaik Alexis Sánchez (Arsenal)WasitAnthony Taylor (Cheshire) [1]Penonton89.472CuacaBerawan20 °C (68 °F)[2]← 2016 2018 → Final Piala FA 2017 adalah pertandingan sepak bola antara Arsenal dan Chelsea yang diselenggarakan pada 27 Mei 2017 di Stadion Wembley, London. Pertandingan ini merupakan pertandingan final ke-136 Piala FA sebagai …
Artikel bertopik sepak bola ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Trabzonspor KulübüNama lengkapTrabzonspor A.Ş.JulukanKaradeniz Fırtınası(Badai Laut Hitam)Bordo-Mavililer(Claret-Blues)Berdiri2 August 1967StadionŞenol Güneş Spor Kompleksi, Trabzon(Kapasitas: 40,782[1])Presiden Ertuğrul DoğanPelatih Abdullah AvcıLigaSüper Lig2022-23ke-6Situs&…
Kovenan Internasional tentang Hak-Hak Sipil dan PolitikNegara-negara anggota Negara anggota Penandatangan yang belum meratifikasi Negara anggota yang mencoba keluar Negara yang belum menandatangani dan belum meratifikasiJenisResolusi Majelis Umum Perserikatan Bangsa BangsaDirancang1954Ditandatangani16 Desember 1966[1]LokasiMarkas Perserikatan Bangsa-Bangsa, New YorkEfektif23 Maret 1976[1]Penanda tangan74[1]Pihak169[1]…
Penyuntingan Artikel oleh pengguna baru atau anonim untuk saat ini tidak diizinkan.Lihat kebijakan pelindungan dan log pelindungan untuk informasi selengkapnya. Jika Anda tidak dapat menyunting Artikel ini dan Anda ingin melakukannya, Anda dapat memohon permintaan penyuntingan, diskusikan perubahan yang ingin dilakukan di halaman pembicaraan, memohon untuk melepaskan pelindungan, masuk, atau buatlah sebuah akun. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bis…
BolognaNama lengkapBologna Football Club 1909 S.p.A.JulukanI Rossoblu (Merah dan Biru)I Veltri (The Greyhounds)Berdiri3 Oktober 1909; 114 tahun lalu (1909-10-03) (Bologna FC)StadionStadio Renato Dall'AraBologna, Italia(Kapasitas: 38.279)PemilikBFC 1909 Lux SPV S.A. (99.93%)Presiden Joey SaputoPelatih Kepala Thiago MottaLigaSerie A2022–2023Serie A, ke–9 dari 20Situs webSitus web resmi klub Kostum kandang Kostum tandang Kostum ketiga Musim ini Bologna Football Club 1909 merupakan seb…
American politician Lowndes H. DavisIllustration from 1882's Public Men of To-DayMember of the U.S. House of Representativesfrom MissouriIn officeMarch 4, 1879 – March 3, 1885Preceded byRobert Anthony HatcherSucceeded byWilliam DawsonConstituency4th district (1879–1883)14th district (1883–1885) Personal detailsBornLowndes Henry Davis(1836-12-13)December 13, 1836Jackson, Missouri, U.S.DiedFebruary 4, 1920(1920-02-04) (aged 83)Cape Girardeau, Missouri, U.S.Resting p…
American athlete This article is about the American sprinter born in 1980. For the Trinidad and Tobago sprinter, see Angela Williams (sprinter, born 1965). For the Colorado politician, see Angela Williams (politician). Angela Williams Medal record Women's athletics Representing United States World Championships 2003 Paris 4x100 m relay Pan American Games 2003 Santo Domingo 100 m World Indoor Championships 2008 Valencia 60 m 2003 Birmingham 60 m 2001 Lisbon 60 m Angela Williams (born Januar…
Sami Khedira Khedira con la nazionale tedesca nel 2018 Nazionalità Germania Altezza 189 cm Peso 90 kg Calcio Ruolo Centrocampista Termine carriera 1º luglio 2021 Carriera Giovanili 1992-1995 Oeffingen1995-2004 Stoccarda Squadre di club1 2004-2006 Stoccarda II22 (1)2006-2010 Stoccarda98 (14)2010-2015 Real Madrid102 (6)2015-2021 Juventus99 (21)2021 Hertha Berlino9 (0) Nazionale 2002-2003 Germania U-1610 (2)2007-2009 Germania U-2115 (5)2009-2018 Germania77 (7) …
Disciple of Gautama Buddha This article is about a Buddhist bhikkhu. For other uses, see Yasa (disambiguation). Venerable YasaPersonalBorn6th century BCEVaranasi, IndiaReligionBuddhismOccupationbhikkhuSenior postingTeacherGautama Buddha Conversion of Yasa; a modern depiction in a Thai temple Part of a series onBuddhism Glossary Index Outline History Timeline The Buddha Pre-sectarian Buddhism Councils Silk Road transmission of Buddhism Decline in the Indian subcontinent Later Buddhists Buddhist m…
Centrifugeuse utilisée au laboratoire pour les opérations de séparation courante. La centrifugation est un procédé de séparation des composés d'un mélange en fonction de leur différence de densité en les soumettant à une force centrifuge. Le mélange à séparer peut être constitué soit de deux phases liquides, soit de particules solides en suspension dans un fluide. Cette technique ne fait pas partie des opérations unitaires en génie chimique. Les centrifugeuses utilisées à cet…
Jacqueline BlochBiographieNaissance 1967Nationalité françaiseFormation Université Pierre-et-Marie-Curie (doctorat) (jusqu'en 1994)École supérieure de physique et de chimie industrielles de la ville de Paris - PSLActivités Physicienne, chercheuseAutres informationsA travaillé pour Délégation Ile-de-France Sud (d) (depuis le 1er octobre 1994)Université d'Ottawa (depuis 1994)Centre national de la recherche scientifiqueMembre de Académie des sciences (2019)Distinctions Médaille d'argent …
Nel linguaggio della cronologia si usa il termine era per indicare il conteggio degli anni a partire da una data particolare. Ad esempio la nascita di Gesù Cristo per l'era cristiana, l'Egira per l'era musulmana, la creazione del mondo per le ere ebraiche e bizantina. Era è una parola usata comunemente per indicare un lungo periodo di tempo. Quando viene utilizzata in campo scientifico, per esempio in geologia, essa può indicare periodi di tempo ben definito, ma di lunghezza arbitraria, come …
Kremlin Cup 2017 Sport Tennis Data 16 ottobre – 22 ottobre Edizione 28ª (uomini) / 22ª (donne) Superficie Cemento indoor Impianto Stadio Olimpico Campioni Singolare maschile Damir Džumhur Singolare femminile Julia Görges Doppio maschile Maks Mirny / Philipp Oswald Doppio femminile Tímea Babos / Andrea Sestini Hlaváčková 2016 2018 La Kremlin Cup 2017, anche conosciuto come VTB Kremlin Cup per motivi di sponsorizzazione, è stato un torneo di tennis che si è giocato sul cemento indoor. …
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (février 2013). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? Com…
Roman Catholic archdiocese in Poland For the Lutheran diocese, see Lutheran Diocese of Wrocław. Archdiocese of WrocławArchidioecesis VratislaviensisArchidiecezja WrocławskaCathedral of St. John in Wrocław, centre of the archdioceseLocationCountry PolandEcclesiastical provinceEcclesiastical province of WrocławStatisticsArea8,850 km2 (3,420 sq mi)Population- Total- Catholics(as of 2020)1,203,873999,214 (83%)InformationDenominationCatholic ChurchSui iuris chu…
Prime Minister of Portugal from 1968 to 1974 In this Portuguese name, the first or maternal family name is Neves and the second or paternal family name is Alves Caetano. Marcelo CaetanoGCTE GCCPrime Minister of PortugalIn office27 September 1968 – 25 April 1974PresidentAmérico TomásPreceded byAntónio de Oliveira SalazarSucceeded byNational Salvation JuntaMinister of Foreign AffairsActing6 October 1969 – 15 January 1970Prime MinisterHimselfPreceded byAlberto Franco No…
This is the talk page for discussing improvements to the WikiProject Central America page. Put new text under old text. Click here to start a new topic. New to Wikipedia? Welcome! Learn to edit; get help. Assume good faith Be polite and avoid personal attacks Be welcoming to newcomers Seek dispute resolution if needed Archives: 1, 2Auto-archiving period: 91 days Central America NA‑class Central America portalThis page is within the scope of WikiProject Central America, a collaborative effor…