Grimmett a reçu le Prix Rollo-Davidson en 1989. Il a été rédacteur en chef de la revue Probability Theory and Stochastic Processes[15] de 2000 à 2005, et en a été nommé directeur de la rédaction [16] en 2009.
En , il est élu Fellow de la Royal Society[18]. Sa nomination mentionne: « At a time of flowering of probabilistic methods in all branches of mathematics, Geoffrey Grimmett is one of the broadest probabilists of his generation, and unquestionably a leading figure in the subject on the world scene. He is particularly recognised for his achievements in the rigorous theory of disordered physical systems. Especially influential is his work on and around percolation theory, the contact model for stochastic spatial epidemics, and the random-cluster model, a class that includes the Ising/Potts models of ferromagnetism. His monograph on percolation is a standard work in a core area of probability, and is widely cited. His breadth within probability is emphasized by his important contributions to probabilistic combinatorics and probabilistic number theory[18]. »
Publications
(en) Geoffrey Grimmett et D. Stirzaker, Probability and Random Processes, Oxford, , 3e éd..
(éd) avec Dominic Welsh Disorder in physical systems, Oxford University Press 1990 (en l'honneur de John Hammersley).
(éd): Probability and phase transitions (NATO Advanced Study Institute, Newton Institute Cambridge 1993), Springer Verlag 2004.
(éd) avec Colin McDiarmid: Combinatorics, Complexity and Chance, Oxford University Press 2007 (en l'honneur de Dominic Welsh).
Vie personnelle
Geoffrey Grimmett est le fils de Benjamin J Grimmett et Patrica W (Lewis) Grimmett[19].
Références
↑« GRIMMETT, Prof. Geoffrey Richard », Who's Who 2014, A & C Black, an imprint of Bloomsbury Publishing plc, 2014; online edn, Oxford University Press(subscription required)
↑G. R. Grimmett et D. R. Stirzaker, Probability and Random Processes, Oxford University Press, (ISBN0-19-857222-0)
↑A. M. Frieze et G. R. Grimmett, « The shortest-path problem for graphs with random arc-lengths », Discrete Applied Mathematics, vol. 10, , p. 57 (DOI10.1016/0166-218X(85)90059-9)