を満たす実数値函数‖ • ‖: V → R であった。またこの三条件を、最初の条件のうち ‖ x ‖ = 0 ⇒ x = 0 を除いてすべて満足するものは半ノルムと呼ばれ、V と半ノルム p との組 (V, p) は同様に半ノルム空間と呼ばれる(半ノルム空間についての詳細は半ノルムおよび局所凸空間も参照のこと)。
文脈上、どの(半)ノルムを考えているか明らかで紛れのおそれの無い場合には、‖ • ‖ や p を落として、単に(半)ノルム空間 V のように書く。
特別な興味がもたれるのは完備なノルム空間で、バナッハ空間と呼ばれる。任意のノルム線型空間 V は適当なバナッハ空間に稠密部分空間として含まれる。そのようなバナッハ空間は V に対して本質的に一意に定まり、V の完備化と呼ばれる。
有限次元線型空間の全てのノルムは、それが同じ位相を誘導するという位相的な観点から同値である(ただし、得られる距離空間は同じとは限らない)[2]。また、任意のユークリッド空間は完備であるから、任意の有限次元ノルム空間がバナッハであることが帰結できる。ノルム空間 V が局所コンパクトとなるための必要十分条件は、単位球体 B = {x : ‖ x ‖ ≤ 1} がコンパクトとなることであり、それはまた V が有限次元であることと同値である(これはリースの補題の帰結である)。実はより一般の結果として「位相線型空間が局所コンパクトとなるための必要十分条件は、それが有限次元となることである」が成り立つ。
半ノルム空間の位相は多くの良い性質を満足する。零ベクトル 0 の近傍系N(0) は、各点 x の近傍系を
二つのノルム空間の間の等距写像 (isometry) は、線型写像 f でノルムを保つものを言う(すなわち、‖ f(v) ‖ = ‖ v ‖ (∀v ∈ V))。等距写像は常に連続かつ単射である。ノルム空間 V と W の間の全射等距写像は等距同型写像と言い、V と W とは互いに等距同型であると言う。等距同型なノルム空間は実用上は同じものと考えられる。
ノルム空間について考えるとき、双対空間の概念に関する議論はそのノルムも勘案した意味で言う。すなわち、ノルム空間 V の双対空間 V′ は V から係数体(それは普通実数体 R または複素数体 C)への連続線型写像(この場合、線型写像のことを(線型)汎函数と言う)。汎函数 φ のノルムは、V の全ての単位ベクトル(ノルム 1 のベクトル)v に亙って取った |φ(x)| の上限(上限ノルム)として定義される。これにより双対空間 V′ はノルム空間となる。ノルム空間上の連続線型汎函数に関する重要な定理に、ハーン–バナッハの定理がある。
Rolewicz, Stefan (1987), Functional analysis and control theory: Linear systems, Mathematics and its Applications (East European Series), 29 (Translated from the Polish by Ewa Bednarczuk ed.), Dordrecht; Warsaw: D. Reidel Publishing Co.; PWN—Polish Scientific Publishers, pp. xvi+524, ISBN90-277-2186-6, MR920371, OCLC13064804
外部リンク
Weisstein, Eric W. "Normed Space". mathworld.wolfram.com (英語).