ベクトル空間の簡単な例は、一つの平面上の固定した点を始点とする矢印(有向線分)全ての成す集合で与えられる。これは物理学で力や速度などを記述するのにもつかわれる。そのような有向線分 v と w が与えられたとき、その二つの有向線分が張る平行四辺形にはその対角線にもう一つ、原点を始点とする有向線分が含まれる。この新しい有向線分を、二つの有向線分の和v + w と呼ぶ。もう一つの演算は有向線分を伸び縮み(スケール因子)させるもので、任意の正の実数a が与えられたとき、v と向きは同じで長さだけを a の分だけ拡大 (英: dilate) または縮小 (英: shrink) した有向線分を、v の a-倍av と言う。a が負のときは av を今度は逆方向に伸び縮みさせることで同様に定める。
いくつか実際に図示すれば、例えば a = 2 のとき、得られるベクトル aw は w と同方向で長さが w の二倍のベクトル (下図、右の赤) であり、この 2w は和 w + w とも等しい。さらに (−1)v = −v は v と同じ長さで向きだけが v と逆になる (下図、右の青)。
数の順序対
もう一つ重要な例は、実数 x, y の対によって与えられる(x と y の対は並べる順番が重要であり、そのような対を順序対という)。この対を (x, y) と書く。そのような対ふたつの和および実数倍は
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)
および
a (x, y) = (ax, ay)
で定義される。
定義
集合 V が、その上の二項演算+ と、体 F の V への作用◦ をもち、これらが任意の u, v, w ∈ V; a, b ∈ F[nb 1]に関して次の公理系を満たすとき、三組 (V, +, ◦) は「体F 上のベクトル空間」と定義される[1][2]。
を満たす。有向線分の例でも
v + w = w + v となることは、和を定義する平行四辺形が和の順番に依存しないことから言える。他の公理も同様の方法で満たすことがどちらの例についてもいえる。故に、特定の種類のベクトルが持つ具体的な特質というものは無視して、この定義によって、先の二つあるいはもっとほかの例もひっくるめて、ベクトル空間という一つの概念として扱うのである。
ベクトルの加法やスカラー乗法は(二項演算の定義によって)閉性と呼ばれる性質を満たすものとなる(つまり V の各元 u, v および F の各元 a に対して u + v および av が必ず V に属する)。これをベクトル空間の公理に独立した条件として加えている文献もある[3]。
抽象代数学の言葉で言えば、先の公理系の最初の四つは「ベクトルの全体が加法に関してアーベル群を成す」という条件にまとめられる。残りの条件は「この群がF 上の加群となる」という条件にまとめられる。あるいはこれを「体 F からベクトル全体の成す群の自己準同型環への環準同型 f が存在すること」と言い換えることもできる。この場合スカラー乗法は av ≔ (f(a))(v) で定められる[4]。
ベクトル空間の公理系から直接的に分かることがいくつかある。それらのうちのいくつかは群論をベクトル全体の成す加法群に適用することで得られる。例えば V の零ベクトル 0 や各元 v に加法逆元 −v が一意に存在することなどはそれである。その方法で得られない性質は分配法則から来るもので、例えば av = 0 ⇔ a = 0 または v = 0 などがそうである。
体 F 上のベクトル空間のもっとも簡単な例は体 F 自身(に、その標準的な加法と乗法を考えたもの)である。これはふつう Fn と書かれる数ベクトル空間 (英: coordinate space ) の n = 1 の場合である。この数ベクトル空間の元はn(長さ n の数列):
で、各 ai が F の元であるようなものである[13]。F = R かつ n = 2 の場合が上記の#導入節で論じたものとなる。
体の拡大
複素数全体の成す集合 C, つまり実数 x, y を用いて x + iy の形に表すことができる数(ただし、 は虚数単位)の全体は、x, y, a, b, c は何れも実数であるものとして、通常の和 (x + iy) + (a + ib) = (x + a) + i(y + b) と実数倍 c(x + iy) = (cx) + i(cy) によって、実数体上のベクトル空間になる(ベクトル空間の公理は複素数の算術が同じ規則を満足するという事実から従う)。
実は、この複素数体の例は本質的には(つまり、同型の意味で)導入節に挙げた実数の順序対の成すベクトル空間の例と同じものである。即ち、複素数 x + iy を複素平面 において順序対 (x, y) を表すものと考えると、複素数体における和とスカラーとの積の規則が、先の例のそれらに対応することが理解される。
より一般に、代数学および代数的整数論における体の拡大は、ベクトル空間の例の一類を与える。即ち、体 F を部分体として含む体 E は、E における加法と F の元の E における乗法とに関して F-ベクトル空間になる[14]。例えば、複素数体は R 上のベクトル空間であり、拡大体 は Q 上のベクトル空間である。特に数論的に意味のある例は、有理数体 Q に一つの代数的複素数 α を添加する拡大(代数体)Q(α) である(Q(α) は Q と α とを含む最小の体になる)。
函数空間
任意の一つの集合 Ω から体 F への函数全体もまた、よくある点ごとの和とスカラー倍によって、ベクトル空間を成す。即ち、二つの函数 f, g の和 (f + g) は
で定義される函数であり、スカラー倍も同様である。そのような函数空間は多くの幾何学的状況で生じる。例えば Ω が実数直線R やその区間あるいは R の他の部分集合などのときである。位相空間論や解析学における多くの概念、例えば連続性、可積分性や可微分性などは、線型性に関してよく振る舞う。即ち、そのような性質を満たす函数の加算やスカラー倍もまた同じ性質を持つ[15]。従って、そのような函数全体の成す集合もまたそれぞれベクトル空間を成す。これら函数空間は、函数解析学の方法を用いてかなり詳しく調べられている(#付加構造を備えたベクトル空間節を参照)。代数学的な制約からもベクトル空間を得ることができる。ベクトル空間F[x] は多項式函数
の解の全体は、任意の a に対して a, b = a/2, c = −5a/2 の三つ組として与えられる。これらの三つ組の成分ごとの加算とスカラー倍はやはり同じ比を持つ三つの変数の組であるから、これも解となり、解の全体はベクトル空間を成す。行列を使えば上記の複数の線型方程式を簡略化して一つのベクトル方程式、つまり
にすることができる。ここで A は与えられた方程式の係数を含む行列、x はベクトル (a, b, c) であり、Ax は行列の乗法を、0 = (0, 0) は零ベクトルをそれぞれ意味する。同様の文脈で、斉次の線型微分方程式の解の全体もまたベクトル空間を成す。例えば、
(1)
を解けば、a, b を任意の定数として
f(x) = ae−x + bxe−x が得られる。ただし ex は指数函数である。
基底は簡明な方法でベクトル空間の構造を明らかにする。基底とは、適当な添字集合で添字付けられたベクトルの(有限または無限)集合
B = {vi}i ∈ I であって、それが全体空間を張るもののうちで極小となるものを言う。この条件は、任意のベクトル v が、基底元の有限線型結合
(ak がスカラーで vik が基底 B の元
(k = 1, ..., n))として表されることを意味し、また極小性は B が線型独立性を持つようにするためのものである。ここでベクトルの集合が線型独立であるというのは、その何れの元も残りの元の線型結合として表されることがないときに言い、これはまた方程式
が満たされるのが、全てのスカラー a1, ..., an が零に等しい場合に限ると言っても同じことである。基底の線型独立性は、V の任意のベクトルが基底ベクトルによる表示(そのような表示ができることは基底が全体空間 V を張ることから保証されている)が一意であることを保証する[20]。このことは、基底ベクトルを R3 における基本ベクトル x, y, z や高次元の場合の同様の対象を一般化するものと見ることによって、ベクトル空間の観点での座標付けとして述べることができる。
任意のベクトル空間が基底を持つことが、ツォルンの補題から従う[21]。従って、ツェルメロ=フレンケル集合論の公理が与えられていれば、任意のベクトル空間における基底の存在性は選択公理と同値になる[22]。また選択公理よりも弱い超フィルター補題(英語版)から、与えられた一つのベクトル空間 V において任意の基底が同じ個数(濃度)の元を持つことが示され(ベクトル空間の次元定理(英語版))[23]、その濃度をベクトル空間 V の次元dim V と呼ぶ。有限個のベクトルで張られる空間の場合であれば、上記の主張は集合論的な基礎付けを抜きにしても示せる[24]。
同型写像とは、線型写像 f: V → W で逆写像g: W → V, 即ち写像の合成(f ◦ g): W → W および (g ◦ f): V → V がともに恒等写像となるものが存在するものを言う。同じことだが、f は一対一(単射)かつ上への(全射)線型写像である[29]。V と W の間に同型写像が存在するとき、これらは互いに同型であるという。このとき、V において成り立つ任意の関係式が f を通じて W における関係式に写され、また逆も g を通じて行えるという意味で、これら本質的に同じベクトル空間と見做すことができる。
例えば、「平面上の有向線分(矢印)」の成すベクトル空間と「数の順序対」の成すベクトル空間は同型である。つまり、ある(固定された)座標の原点を始点とする平面上の有向線分は、図に示すように、線分の x-成分と y-成分を考えることにより、順序対として表すことができる。逆に順序対 (x, y) が与えられてとき、x だけ右に(x が負のときは |x| だけ左に)行って、かつ y だけ上に(y が負のときは |y| だけ下に)行く有向線分として v が得られる。
固定されたベクトル空間の間の線型写像 V → W の全体は、それ自体が線型空間を成し、HomF(V, W) や L(V, W) などで表される[30]。V から係数体 F への線型写像全体の成す空間は、V の双対ベクトル空間V∗ と呼ばれる[31]。自然変換V → V∗∗ を通じて、任意のベクトル空間はその二重双対へ埋め込むことができる。この写像が同型となるのは空間が有限次元のときであり、かつその時に限る[32]。
V の基底を一つ選ぶと、V の任意の元は基底ベクトルの線型結合として一意的に表されるから、線型写像 f: V → W は基底ベクトルの行き先を決めることで完全に決定される[33]。
dim V = dim W ならば、V と W の基底を固定するとき、その間の全単射から V の各基底元を W の対応する基底元へ写すような線型写像が生じるが、これは定義により同型写像となる[34]。従って、二つのベクトル空間が同型となるのは、それらの次元が一致するときであり、逆もまた成り立つ。これは、別な言い方をすれば、任意のベクトル空間はその次元により(違いを除いて)「完全に分類されている」ということである。特に任意の n-次元 F-ベクトル空間 V は Fn に同型である。しかし、「標準的」あるいはあらかじめ用意された同型というものは存在しない。実際の同型 φ: Fn → V は、Fn の標準基底を V に φ で写すことにより、V を選ぶことと等価である。適当な基底を選ぶ自由度があることは、無限次元の場合の文脈で特に有効である(後述)。
自己準同型、即ち線型写像 f: V → V は、この場合ベクトル v とその f による像 f(v) とを比較することができるから、特に重要である。
任意の零でないベクトル v が、スカラー λ に対して
λv = f(v) を満足するとき、これを f の固有値 (英: eigenvalue ) λ に属する固有ベクトル (英: eigenvector ) という[nb 5][38]。同じことだが、固有ベクトル v は差 f − λ · Id の核の元である(ここで Id は恒等写像V → V)。V が有限次元ならば、これは行列式を使って言い換えることができる。つまり、f が固有値 λ を持つことは
となることと同値である。行列式の定義を書き下すことにより、この式の左辺は λ を変数とする多項式と見ることができて、これを f の固有多項式と呼ぶ[39]。係数体 F がこの多項式の根を含む程度に大きい(F = C のように、F が代数的閉体ならばこの条件は自動的に満たされる)ならば任意の線型写像は少なくとも一つの固有ベクトルを持つ。
ベクトル空間 V は固有基底(英語版)(固有ベクトルからなる基底)を持つかもしれないし持たないかもしれないが、それがどちらであるかは写像のジョルダン標準形によって制御される[nb 6]。f の特定の固有値 λ に属する固有ベクトル全体の成す集合は、固有値 λ(と f)に対応する固有空間と呼ばれるベクトル空間を成す。無限次元の場合の対応する主張であるスペクトル定理に達するには、函数解析学の道具立てが必要である。
基本的な構成法
上記具体例に加えて、与えられたベクトル空間から別のベクトル空間を得る標準的な線型代数学的構成がいくつか存在する。それらは以下に述べる定義に加えて普遍性と呼ばれる、線型空間 X を X から他の任意の線型空間への線型写像によって特定することができるという性質によっても特徴づけられる。
ベクトル空間 V の空でない部分集合W が加法とスカラー乗法の下で閉じている(従ってまた、V の零ベクトルを含む)ならば、V の部分空間であるという[40]。V の部分空間は、それ自体が(同じ体上の)ベクトル空間を成す。ベクトルからなる集合 S に対して、それを含む部分空間すべての交わりは S の線型包合 S を含む最小の V の部分空間を成す。属する元の言葉で言えば、S の張る空間は S の元の線型結合全体の成す部分空間である[41]。
部分空間に相対する概念として、商空間がある[42]。任意の部分空間 W ⊂ V に対して、(「V を W で割った」)商空間 V/W は以下のように定義される。
まず集合として V/W は、v を V の任意のベクトルとして
v + W = {v + w | w ∈ W} なる形の集合全てからなる。その二つの元 v1 + W および v2 + W の和は (v1 + v2) + W で、またスカラー倍の積は
a(v + W) = (av) + W で与えられる。この定義の鍵は
v1 + W = v2 + W となる同値が v1 と v2 との差が W に入ることである[nb 7]。この方法で商空間は、部分空間 W に含まれる情報を「忘却」したものとなる。
線型写像 f: V → W の核ker(f) は W の零ベクトル 0 へ写されるベクトル v からなる[43]。核および像im(f) = {f(v) | v ∈ V} はともにそれぞれ V および W の部分空間である[44]。核と像の存在は(固定した体 F)上の加群の圏がアーベル圏(つまり、数学的対象とそれらの間の構造を保つ写像の集まり、即ち圏、であってアーベル群の圏と非常によく似た振る舞いをするもの)を成すことの要件の一部である[45]。これにより、同型定理(線型代数学的な言い方をすれば階数・退化次数の定理)
同じ体 F 上の二つのベクトル空間 V と W のテンソル積 (英: tensor product ) V ⊗FW あるいは単に V ⊗ W は、線型写像を多変数にするような概念の拡張を扱う多重線型代数における中心的な概念のひとつである。写像 g: V × W → X; (v, w) ↦ g(v, w) が双線型写像であるとは、g が両変数 v, w の何れについても線型であることを言う。これはつまり、w を固定したとき写像 v ↦ g(v, w) が線型であり、かつ v を固定した時も同様であることを意味する。
収束性の問題は、ベクトル空間 V に両立する位相(近さを記述することを可能にする構造)を入れることによって扱われる。[53][54]。 ここでいう「両立」とは、加法とスカラー乗法がともに連続写像となるという意味で、大雑把に言えば、x, y ∈ V と a ∈ F が限られた範囲の中にあれば、x + y と ax も限られた範囲に留まるということである[nb 8]。スカラーについてこの議論がきちんと意味を持つようにするためには、この文脈において体 F にも位相が定められていなければならない。よく用いられるのが実数体や複素数体である。
このような線型位相空間ではベクトル項級数を考えることができて、V の元からなる列 (fi)i ∈ N の無限和
とは、対応する有限部分和の極限を表すものである。例えば fi が、ある(実または複素)函数空間に属する函数であるとすると、この場合の級数は函数項級数と呼ばれる。函数項級数の収束の様態(英語版)は、函数空間に課された位相に依存する。そのような様態の中でも各点収束と一様収束の二つは特に際立った例である。
概念的な観点では、位相線型空間に関する全ての概念は位相とうまく合うものでなければならない。例えば、位相線型空間の間の線型写像(あるいは線型汎函数)V → W は連続であるものと仮定される[58]。特に、(位相的)双対空間 V∗ は連続汎函数 V → R (or C) からなるものとする。基礎を成すハーン-バナッハの定理は、適当な位相線型空間を連続汎函数によって部分空間に分けることに関係するものである[59]。
定義によりヒルベルト空間における任意のコーシー列は極限を持つから、逆に与えられた極限函数を近似するという適当な性質を持つ函数列 fn を求めることが重要になる。初期の解析学では、テイラー近似の形で可微分函数 f の多項式列による近似が確立された[65]。ストーン=ヴァイアシュトラスの定理により、[a, b] 上の任意の連続函数は適当な多項式列によりいくらでも近く近似できる[66]。三角関数を用いた同様の近似法は一般にフーリエ展開と呼ばれ、工学において広く応用される(#フーリエ変換節を参照)。より一般に、またより概念的に言えば、これらの定理は「基本函数族」とは何であるかということを端的に記述するものになっている。あるいは抽象ヒルベルト空間においてどのような基本ベクトル族が、ヒルベルト空間 H を位相的に生成するに十分であるかをいうものである。ここで、位相的に生成する(あるいは単に生成する)とは、それらの位相的線型包と呼ばれる、線型包の閉包(即ち、有限線型結合およびその極限)が、全体空間に一致することである。そのような函数の集合は H の基底(あるいはヒルベルト基底)と呼ばれ、基底の濃度はヒルベルト空間 H のヒルベルト次元と呼ばれる[nb 12]。これらの定理は適当な基底函数族が近似の目的で十分性を示すことのみならず、グラム・シュミットの正規直交化法を用いて正規直交基底が得られることも意味している[67]。そのような直交基底は、有限次元ユークリッド空間における座標軸をヒルベルト空間に対して一般化したものと考えることができる。
シュヴァルツ超函数 (英: distribution) は、各「試験」函数(典型的には、関数の台を持つ滑らかな関数)に数を連続的な仕方で割り当てる線型写像をいう。即ち、シュヴァルツ超函数の空間は、試験函数の空間の(連続的)双対である[78]。後者の空間には、試験函数 f それ自体のみならずその高階導函数までを考慮するような位相が入っている。シュヴァルツ超函数の典型的な例はある領域 Ω 上で試験函数 f を積分する作用素
である。Ω が一点集合{p}のとき、これは試験函数 f に点 p における値を割り当てるディラックのデルタ関数δ を定める(δ(f) = f(p))。
周期関数をフーリエ級数を成す三角関数の和に分解することは物理学や工学においてよく用いられる手法である[nb 13][80]。台となるベクトル空間は、ふつうはヒルベルト空間L2(0, 2π) であり、函数族 sin mx および cos mx (m は整数) が正規直交基底を与える[81]。L2-函数 f のフーリエ展開は
ベクトル束は位相空間X によって連続的に径数付けられたベクトル空間の族である[96]。より明確に言えば、X 上のベクトル束とは、位相空間 E であって、連続写像
を持ち、X の各点 x においてファイバーV = π−1(x) がベクトル空間を成すようなものを言う。dim V = 1 ならば直線束という。任意のベクトル空間 V に対し、射影 X × V → X は直積 X × V をファイバー束にする。X 上のベクトル束は、局所性のある(固定された)ベクトル空間 V と X との直積でなければならない。つまり、X の各点 x に対して x の適当な近傍U を選んで、π の π−1(U) への制限が自明束 U × V → U に同型となるようにすることができる[nb 15]。これらの局所自明性にもかかわらず、ベクトル束は巨視的には(台となる位相空間 X の形に依存して)「捻じれ」ているのである。つまり、ベクトル束は自明束 X × V (と大域的に同型)である必要はない。例えば、メビウスの帯は(円周を実数直線上の半開区間と同一視することによって)円周 S1 上の線束と見做すことができるが、しかしこれは円筒S1 × R とは異なる。後者は向き付け可能性だが、前者はそうではない[101]。
ある種のベクトル束の性質は、台となる位相空間についての情報を提供する。例えば、接空間の集まりからなる接束は可微分多様体の点によって径数付けられる。円周 S1 の接束は、S1 上に大域的な非零ベクトル場が存在するから、大域的に S1 × R に同型である[nb 16]。対照的に、毛玉の定理により、二次元球面 S2 上の接ベクトル場で至る所消えていない者は存在しない[102]。K-理論は同じ位相空間上の全てのベクトル束の同型類について研究するものである[103]。深い位相的かつ幾何学的な観察に加えて、この理論には実有限次元多元体の分類(そのようなものは R, C のほかは四元数体 H と八元数体 O しかない)というような純代数学的な帰結も存在する(フルヴィッツの定理(英語版)を参照)。
ベクトル空間が体に対するものであるように、加群 (英: modules) の概念は環に対するものである。これはベクトル空間の公理において体 F とするところを環 R で置き換えることで得られる[104]。加群の理論はベクトル空間のそれと比べて(環の元に必ずしも逆元が存在しないことで)より複雑なものになっている。例えば加群は、Z-加群(つまりアーベル群)としての Z/2Z のように、必ずしも基底を持たない。基底を持つような加群(ベクトル空間もそう)は自由加群と呼ばれる。にも拘わらずベクトル空間は、係数環が体であるような加群として簡単に定義することができて、その元をベクトルと呼ぶ。可換環の代数幾何学的解釈は、それらの環のスペクトルを通じて、ベクトル束の代数的な対応物である局所自由加群の概念などを展開することを可能にする。
大雑把に言うと、アフィン空間 (英: affine space ) というのはベクトル空間からその原点をわからなくしたものである[105]。より正確には、アフィン空間とは自由かつ推移的なベクトル空間の群作用を備えた集合を言う。特にベクトル空間は、写像
を考えることによって、自身の上のアフィン空間となる。W をベクトル空間とするとき、W のアフィン部分空間とは、固定したベクトル x ∈ W によって線型部分空間 V を平行移動することによって得られるものを言う。この空間は x + V(V による W の剰余類)であり、v ∈ V に対する x + v の形のベクトル全てからなる。重要な例は、非斉次の線型方程式系
の解空間である。これは斉次の場合、つまり
b = 0 の場合を一般化するものである[106]。この解空間は、方程式の特殊解 x と、付随する斉次方程式の解空間(つまり A の核空間)V に対するアフィン部分空間 x + V である。
固定された有限次元ベクトル空間 V の一次元線型部分空間全体の成す集合は射影空間と呼ばれる。これは平行線が無限遠において交わるという概念の定式化に用いられる[107]。グラスマン多様体(英語版)および旗多様体(英語版)はそれぞれ、決まった次元 k の線型部分空間および旗(英語版)と呼ばれる線型部分空間の包含列を径数付けることによる、射影空間の概念の一般化である。
Braun, Martin (1993), Differential equations and their applications: an introduction to applied mathematics, Berlin, New York: Springer-Verlag, ISBN978-0-387-97894-9
Dennery, Philippe; Krzywicki, Andre (1996), Mathematics for Physicists, Courier Dover Publications, ISBN978-0-486-69193-0
Dudley, Richard M. (1989), Real analysis and probability, The Wadsworth & Brooks/Cole Mathematics Series, Pacific Grove, CA: Wadsworth & Brooks/Cole Advanced Books & Software, ISBN978-0-534-10050-6
Folland, Gerald B. (1992), Fourier Analysis and Its Applications, Brooks-Cole, ISBN978-0-534-17094-3
Gasquet, Claude; Witomski, Patrick (1999), Fourier Analysis and Applications: Filtering, Numerical Computation, Wavelets, Texts in Applied Mathematics, New York: Springer-Verlag, ISBN0-387-98485-2
Ifeachor, Emmanuel C.; Jervis, Barrie W. (2001), Digital Signal Processing: A Practical Approach (2nd ed.), Harlow, Essex, England: Prentice-Hall (2002発行), ISBN0-201-59619-9
Krantz, Steven G. (1999), A Panorama of Harmonic Analysis, Carus Mathematical Monographs, Washington, DC: Mathematical Association of America, ISBN0-88385-031-1