シャジクモ類はときに密生して水底を覆う群落を形成する(Chara bed ともよばれる)[39](図3a, b)。このようなシャジクモ類の群落は、生態的に重要な役割を担う。水鳥や草食魚の重要な食料であり、また魚介類に好適な生育環境を提供する[40][41]。さらに基質の安定化、栄養塩の吸収、浮遊物の吸着などを通じて透明度の上昇・維持に寄与すると考えられている[12][15]。
^ abMcCourt, R. M., Casanova, M. T., Karol, K. G. & Feist, M. (1999). “Monophyly of genera and species of Characeae based on rbcL sequences, with special reference to Australian and European Lychnothamnus barbatus (Characeae: Charophyceae)”. Australian Journal of Botany47: 361-369. doi:10.1071/BT97100.
^ abPerez, W., Hall, J. D., McCourt, R. M. & Karol, K. G. (2014). “Phylogeny of North American Tolypella (Charophyceae, Charophyta) based on plastid DNA sequences with a description of Tolypella ramosissima sp. nov”. Journal of Phycology50: 776-789. doi:10.1111/jpy.12219.
^ abPérez, W., Hall, J. D., McCourt, R. M. & Karol, K. G. (2014). “Phylogeny of North American Tolypella (Charophyceae, Charophyta) based on plastid DNA sequences with a description of Tolypella ramosissima sp. nov”. Journal of Phycology50: 776-789. doi:10.1111/jpy.12219.
^ abcWehr, J.D., Sheath, R.G. & Kociolek, J.P., ed (2014). Freshwater Algae of North America: Ecology and Classification. 2nd Edition. Academic Press. pp. 1066. ISBN978-0-12-385876-4
^ abcdefghvan den Hoek, C., Mann, D., Jahns, H. M. & Jahns, M. (1995). Algae: an introduction to phycology. Cambridge University Press. ISBN978-0521316873
^ abcdefghijkBlindow, I. & Schudack, M. (2015). “Class Charophyceae”. In Frey, W.. Syllabus of Plant Families - A. Engler's Syllabus der Pflanzenfamilien Part 2/1: Photoautotrophic eukaryotic Algae. Stuttgart: Borntraeger Science Publishers. pp. 294–300. ISBN978-3-443-01083-6
^ abcdefghijklmnopqrYork, P. V. & Johnson, L. R. (eds) (2002). “Order Charales”. The Freshwater Algal Flora of the British Isles: an Identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press. pp. 593–595. ISBN0-521-77051-3
^ abcde廣瀬弘幸 (1972). “輪藻綱”. 藻類学総説. 内田老鶴圃新社. pp. 503–506
^ abcdCook, M. E., Graham, L. E., Botha, C. E. J. & Lavin, C. A. (1997). “Comparative ultrastructure of plasmodesmata of Chara and selected bryophytes: toward an elucidation of the evolutionary origin of plant plasmodesmata”. American Journal of Botany84: 1169-1178. doi:10.2307/2446040.
^ abcCook, M. E., Graham, L. E. & Lavin, C. A. (1998). “Cytokinesis and nodal anatomy in the charophycean green algaChara zeylanica”. Protoplasma203: 65-74. doi:10.1007/BF01280588.
^Williamson, R. E. (1992). “Cytoplasmic streaming in characean algae: mechanism, regulation by Ca2+, and organization”. In Melkonian, M.. Algal Cell Motility. Springer, Boston, MA. pp. 73-98. ISBN978-0412024313
^Michaux-Ferrière, N. & Soulié-Märsche, I. (1987). “The quantities of DNA in the vegetative nuclei of Chara vulgaris and Tolypella glomerata (Charophyta)”. Phycologia26: 435-442. doi:10.2216/i0031-8884-26-4-435.1.
^Kiss, J. Z. & Staehelin, L. A. (1993). “Structural polarity in the Chara rhizoid: a reevaluation”. American Journal of Botany80: 273-282. doi:10.1002/j.1537-2197.1993.tb13800.x.
^Delaux, P. M., Xie, X., Timme, R. E., Puech‐Pages, V., Dunand, C., Lecompte, E., ... & Séjalon‐Delmas, N. (2012). “Origin of strigolactones in the green lineage”. New Phytologist195: 857-871. doi:10.1111/j.1469-8137.2012.04209.x.
^McConnaughey, T. (1998). “Acid secretion, calcification, and photosynthetic carbon concentrating mechanisms”. Can. J. Bot.76: 1119–1126. doi:10.1139/b98-066.
^Wright, V.P. (1991). “Carbonate sediments and limestones: constituents”. In Tucker, M.E. & Wright, V.P.. Carbonate Sedimentology. Blackwell, Oxford. pp. 1-27. ISBN978-0632014729
^Lucas, W. J. (1995). “Plasmodesmata: intercellular channels for macromolecular transport in plants”. Current Opinion in Cell Biology7: 673-680. doi:10.1016/0955-0674(95)80109-X.
^Lucas, W. J., Brechignac, F., Mimura, T. & Oross, J. W. (1989). “Charasomes are not essential for photosynthetic utilization of exogenous HCO3− in Chara corallina”. Protoplasma151: 106-114. doi:10.1007/BF01403447.
^Nishiyama, T., Sakayama, H., De Vries, J., Buschmann, H., Saint-Marcoux, D., Ullrich, K. K., ... & Vosolsobě, S. (2018). “The Chara genome: secondary complexity and implications for plant terrestrialization”. Cell174: 448-464. doi:10.1016/j.cell.2018.06.033.
^ abcPickett-Heaps, J. D. (1975). Green algae: structure, reproduction, and evolution in selected genera. Sinauer Associates. pp. 606. ISBN0878936521
^Braun, M. & Wasteneys, G. O. (1998). “Reorganization of the actin and microtubule cytoskeleton throughout blue-light-induced differentiation of characean protonemata into multicellular thalli”. Protoplasma202: 38-53. doi:10.1007/BF01280873.
^Pickett-Heaps, J. D. (1968). “Ultrastructure and differentiation in Chara fibrosa. IV. Spermatogenesis”. Australian Journal of Biological Sciences21: 655-690. doi:10.1071/BI9680655.
^Duncan, T. M., Renzaglia, K. S. & Garbary, D. J. (1997). “Ultrastructure and phylogeny of the spermatozoid of Chara vulgaris (Charophyceae)”. Plant Systematics and Evolution204: 125-140.
^Takatori, S. & Imahori, K. (1971). “Light reactions in the control of oospore germination of Chara delicatula”. Phycologia10: 221-228. doi:10.2216/i0031-8884-10-2-221.1.
^Stross, R. G. (1979). “Density and boundary regulations of the Nitella meadow in Lake George, New York”. Aquatic Botany6: 285-300. doi:10.1016/0304-3770(79)90066-4.
^Andrews, M., Box, R., McInroy, S. & Raven, J. A. (1984). “Growth of Chara hispida: II. Shade adaptation”. The Journal of Ecology72: 885-895. doi:10.2307/2259538.
^Frantz, T. C. & Cordone, A. J. (1967). “Observations on deepwater plants in Lake Tahoe, California and Nevada”. Ecology48: 709-714. doi:10.2307/1933727.
^Kufel, L. & Kufel, I. (2002). “Chara beds acting as nutrient sinks in shallow lakes — a review”. Aquatic Botany72: 249-260. doi:10.1016/S0304-3770(01)00204-2.
^Dugdale, T. M., Hicks, B. J., De Winton, M. & Taumoepeau, A. (2006). “Fish exclosures versus intensive fishing to restore charophytes in a shallow New Zealand lake”. Aquatic Conservation: Marine and Freshwater Ecosystems16: 193-202. doi:10.1002/aqc.711.
^Schmieder, K., Werner, S. & Bauer, H. G. (2006). “Submersed macrophytes as a food source for wintering waterbirds at Lake Constance”. Aquatic Botany84: 245-250. doi:10.1016/j.aquabot.2005.09.006.
^Kato, S., Kawai, H., Takimoto, M., Suga, H., Yohda, K., Horiya, K., ... & Sakayama, H. (2014). “Occurrence of the endangered species Nitellopsis obtusa (Charales, Charophyceae) in western Japan and the genetic differences within and among Japanese populations”. Phycological Research62: 222-227. doi:10.1111/pre.12057.
^Wayne, R. (1994). “The excitability of plant cells: with a special emphasis on characean internodal cells”. The Botanical Review60: 265-367. doi:10.1007/BF02960261.
^Woodhouse, F. G. & Goldstein, R. E. (2013). “Cytoplasmic streaming in plant cells emerges naturally by microfilament self-organization”. Proceedings of the National Academy of Sciences110: 14132-14137. doi:10.1073/pnas.1302736110.
^Karol,K. G.,McCourt,R. M.,Cimino,M. T. & Delwiche,C. F. (2001). “The closest living relatives of land plants”. Science294: 2351-2353. doi:10.1126/science.1065156.
^Wodniok, S., Brinkmann, H., Glöckner, G., Heidel, A. J., Philippe, H., Melkonian, M. & Becker, B. (2011). “Origin of land plants: do conjugating green algae hold the key?”. BMC Evolutionary Biology11: 104. doi:10.1186/1471-2148-11-104.
^Timme, R. E., Bachvaroff, T. R. & Delwiche, C. F. (2012). “Broad phylogenomic sampling and the sister lineage of land plants”. PLoS One7: e29696. doi:10.1371/journal.pone.0029696.
^Zhong, B., Xi, Z., Goremykin, V. V., Fong, R., Mclenachan, P. A., Novis, P. M., ... & Penny, D. (2013). “Streptophyte algae and the origin of land plants revisited using heterogeneous models with three new algal chloroplast genomes”. Molecular Biology and Evolution31: 177-183. doi:10.1093/molbev/mst200.
^O.T.P.T.I. [= One Thousand Plant Transcriptomes Initiative] (2019). “One thousand plant transcriptomes and the phylogenomics of green plants”. Nature574: 679-685. doi:10.1038/s41586-019-1693-2.
^ abcdeFeist, M., Liu, J. & Tafforeau, P. (2005). “New insights into Paleozoic charophyte morphology and phylogeny”. American Journal of Botany92: 1152-1160. doi:10.3732/ajb.92.7.1152.
^Fritsch, F. E. (1935). Structure and Reproduction of the Algae. Vol. I. Cambridge University Press. pp. 791
^ abSmith, G. M. (1951). Manual of Phycology, An Introduction to the Algae and Their Biology. Chronica Botanica Company. pp. 375. ISBN978-0826082701
^Prescott, G.W. (1969). The Algae: a Review. Houghton Mifflin. pp. 436. ISBN0177614218
^Pascher, A. (1931). “Systematische Übersicht über die mit Flagellaten in Zusammenhang stehenden Algenreihen und Versuch einer Einreihung dieser Algenstämme in die Stämme des Pflanzenreiches”. Beih. Bot. Centralbl., Abt. 248: 317–332.
^Papenfuss, G.F. (1946). “Proposed names for the phyla of algae”. Bullet. Torrey Bot. Culb.73: 217-218.
^Round, F.E. (1973). The Biology of the Algae. 2nd Edition. Edward Arnold Publishers. pp. 278. ISBN978-0713124200
^Stewart,K.D. & Mattox, K. R. (1975). “Comparative cytology, evolutionand classification of the green algae, with some consideration of theorigin of other organisms with chlorophylls a and b.”. Botanical Review4141: 104–135.
^Mattox, K. R. & Stewart, K. D. (1984). “Classification of the green algae: a concept based on comparative cytology”. In Irvine, D. E. G. & John, D. (eds.). The Systematics of the Green Algae. Academic Press, New York. pp. 29-72
^ abcGuiry, M.D. & Guiry, G.M. (2020) AlgaeBase. World-wide electronic publication, Nat. Univ. Ireland, Galway. searched on 8 February 2020.
^Karol, K. G., Skawinski, P. M., McCourt, R. M., Nault, M. E., Evans, R., Barton, M. E., ... & Hall, J. D. (2017). “First discovery of the charophycean green alga Lychnothamnus barbatus (Charophyceae) extant in the New World”. American Journal of Botany104: 1108-1116. doi:10.3732/ajb.1700172.
^Pérez, W., Casanova, M. T., Hall, J. D., McCourt, R. M. & Karol, K. G. (2017). “Phylogenetic congruence of ribosomal operon and plastid gene sequences for the Characeae with an emphasis on Tolypella (Characeae, Charophyceae)”. Phycologia56: 230-237.