Aksjomat podzbiorówAksjomat podzbiorów, aksjomat wyróżniania, aksjomat wycinania – jeden z aksjomatów teorii mnogości w ujęciu Zermela-Fraenkla[1]. Wprowadzony do pierwszej aksjomatyki teorii mnogości przez Zermela w roku 1908. W pierwotnej postaci wzbudzał wiele kontrowersji; współczesna postać pochodzi od Skolema. Aksjomat stwierdza:
Czyli każde wskazanie elementów dowolnego zbioru A formułą P jest pewnym zbiorem (zawartym w A). W istocie nie jest on jednym aksjomatem, lecz schematem aksjomatów, tzn. mamy do czynienia z nieskończonym zbiorem aksjomatów. Każdej formule odpowiada osobny aksjomat. Zależność od pozostałych aksjomatówZdefiniujmy predykat funkcyjny Aksjomat pary potwierdza istnienie zbioru natomiast zbiór wynika wprost z aksjomatu zbioru pustego, co dowodzi słuszności definicji predykatu. Zgodnie z aksjomatem zastępowania każdy predykat funkcyjny posiada swój obraz, co dowodzi istnienia rodziny zbiorów z czego mocą aksjomatu sumy wynika istnienie zbioru Przypisy
Linki zewnętrzne
Information related to Aksjomat podzbiorów |