Logarytm (łac. [now.] logarithmus – stosunek, z gr. λόγ- log-, od λόγος logos – zasada, rozum, słowo, i ἀριθμός árithmós – liczba) – dla danych liczb liczba oznaczana będąca rozwiązaniem równania Taka definicja logarytmu została zdefiniowana przez Eulera[1]. Liczba nazywana jest podstawą (zasadą) logarytmu, liczba liczbą logarytmowaną (niekiedy antylogarytmem swojego logarytmu, patrz: antylogarytm). Jest to więc wykładnik potęgi, do jakiej należy podnieść podstawę aby otrzymać liczbę logarytmowaną [2].
Przykłady
gdyż
gdyż
Logarytmy po raz pierwszy opisali w XVI wieku matematycy brytyjscy: Szkot John Napier i Anglik Henry Briggs. Były odpowiedzią na konieczność wykonywania żmudnych i czasochłonnych obliczeń w związku z burzliwie rozwijającymi się wówczas astronomią, nawigacją i handlem. Natomiast Euler był pierwszym matematykiem, który przedstawił logarytmy liczb zespolonych[3]. Historycznie praca Eulera na ten temat była pierwszą analizą funkcji przestępnej więcej niż jednej zmiennej[3].
Pozwalały zastąpić mnożenia, dzielenie, pierwiastkowanie na łatwiejsze odpowiednio dodawanie, odejmowanie i dzielenie przez liczbę naturalną. Tablice logarytmiczne i suwaki logarytmiczne stały się podstawową pomocą we wszelkich obliczeniach naukowych, astronomicznych, geodezyjnych i inżynierskich. Współcześnie, z powodu wyparcia ich przez kalkulatory i komputery, ich użytkowa rola jest dużo mniejsza.
Logarytm przy ustalonej podstawie pozwala zdefiniować funkcję logarytmiczną następująco:
Logarytm naturalny, nazywany często logarytmem Nepera, to logarytm o podstawie oznaczanej literą równą w przybliżeniu Zwyczajowo zamiast pisze się Wybór za podstawę tej szczególnej liczby podyktowany jest definicją funkcji wykładniczej dla której postaci
wtedy jej pochodna (również formalna) co oznacza, że zamiast ponieważ W pewnym sensie logarytm naturalny jest więc rzeczywiście bardziej „naturalny” spośród logarytmów. Podstawa logarytmu naturalnego jest liczbą przestępną i jedną z najważniejszych stałych matematycznych.
Konwencja ta jednak bywa myląca, gdyż niektórzy oznaczają tym symbolem logarytm naturalny. W szczególności oznacza logarytm naturalny w niektórych językach programowania, choć np. w polskiej wersji Microsoft Excela ten sam symbol oznacza logarytm dziesiętny.
Istnieje pewna zależność wartości logarytmu liczby od liczby cyfr przed przecinkiem potrzebnych do jej zapisania:
Dla dowolnej liczby jej logarytm dziesiętny zaokrąglony w górę (sufit) jest równy minimalnej liczbie cyfr przed przecinkiem w zapisie dziesiętnym np.
Po zaokrągleniu w górę uzyskujemy 7 i rzeczywiście zapis liczby 5083495,424 wymaga 7 miejsc dziesiętnych przed przecinkiem. Trzeba jednak pamiętać o poniższych wartościach:
Analogicznie dla dowolnego systemu pozycyjnego o podstawie należy użyć logarytmu o podstawie
Własności
Znaki liczby w zależności od wartości
Wprost z definicji logarytmu wynika:
Z własności potęgi wynikają następujące równości:[4]
(1)
(2)
Wnioskiem z powyższych jest następująca równość nazywana wzorem na zmianę podstawy logarytmu:[4]
albo
stąd przyjmując
albo w szczególności
Z powyższych własności można wykazać m.in. równości
Wzór (1): Niech Stąd, zgodnie z definicją, Mnożąc stronami obie równości Ponieważ więc Czyli Stąd teza.
Wzór (2): Niech Stąd, zgodnie z definicją, Podnosząc obie strony do potęgi Ponieważ więc Czyli Stąd teza.
Pozostałe wzory tej sekcji łatwo wynikają z dwóch udowodnionych tu równości.
Logarytm liczby zespolonej
Logarytm można uogólnić na liczby zespolone, co pozwala obliczać go także dla ujemnych liczb rzeczywistych.
Niech będzie różną od zera liczbą zespoloną. Wtedy:
Logarytm zespolony nie jest jednoznacznie określony, gdyż daje różne wartości dla różnych Przyjmując otrzymujemy tzw. wartość główną logarytmu. Niektórzy autorzy oznaczają ją dla odróżnienia dużą literą: Inni przeciwnie – wielką literą oznaczają ogólną postać logarytmu, a małą wartość główną[5]. Jeszcze inni obydwie wersje oznaczają tym samym symbolem pisanym małą literą.
Logarytm o podstawie zespolonej można sprowadzić do logarytmu naturalnego stosując wzór na zmianę podstawy:
Oczywiście zbiór wartości jest podwójnie indeksowany.
Kologarytm
Liczbę przeciwną do logarytmu z nazywało się niegdyś kologarytmem[6] i oznaczało lub Dzisiaj pojęcie to odchodzi w zapomnienie i pisze się po prostu Wyrażenie to używane jest do tej pory m.in. w chemii przy określaniu skali kwasowości.
Logarytm dyskretny elementu (przy podstawie ) w danej grupie skończonej jest to taka liczba całkowita że w grupie zachodzi równość (stosując notację multiplikatywną dla działania grupowego):
Przykłady i zastosowania
Matematyka
Skala logarytmiczna na wykresach – czasami rozpiętość przedstawianych wielkości jest tak duża, że nie wystarczy podziałka liniowa; por. Diagram HR w astronomii.
Logarytm jest funkcją odwrotną do funkcji wykładniczej. Dlatego przydaje się wszędzie tam, gdzie rozwiązuje się równanie wykładnicze – np. do przewidzenia liczby rat kredytu albo czasu, kiedy rozpad promieniotwórczy doprowadzi do danego stężenia pierwiastka.
Regresja liniowa: jeśli oczekiwana zależność między danymi jest potęgowa lub wykładnicza, to analizuje się liniową zależność między ich logarytmami.
↑Ten wzór pozwala zastosować logarytm do obliczania dowolnych potęg Jest to przydatne na komputerach (tzw. funkcja pow), na suwakach logarytmicznych lub przy użyciu gotowych tablic. W zastosowaniach praktycznych najczęściej używaną wartością a jest 2, e oraz 10.