Share to: share facebook share twitter share wa share telegram print page

 

Número complexo hiperbólico

Conjuntos de números



Na matemática, os números complexos hiperbólicos são uma extensão bidimensional dos números reais definidos de forma análoga aos números complexos.[1] A diferença geométrica principal entre os dois é que enquanto a multiplicação de números complexos respeita a norma euclidiana (quadrada) padrão (x2 + y2) em R2, a multiplicação de números complexos hiperbólicos respeita a norma (quadrada) de Minkowski (x2y²).

Algebricamente os números complexos hiperbólicos têm a propriedade interessante, ausente nos números complexos, de ter idempotentes.[1] Além disso, a coleção de todos os números complexos hiperbólicos não dá forma a um corpo, mas, em vez disso, essa estrutura está na mais larga categoria de anéis.

Definição

Um número complexo hiperbólico é um número na forma:[1]

onde x e y são números reais e a quantidade h satisfaz:

Escolhendo h2 = − 1 resulta nos números complexos. É esta mudança do sinal que distingue os números complexos hiperbólicos dos complexos. A quantidade h aqui não é um número real mas uma quantidade independente; isto é, não é igual a ± 1.

A coleção de todo z é chamado de plano complexo hiperbólico. A adição e a multiplicação de números complexos hiperbólicos são definidas por:

.

Essa multiplicação é comutativa, associativa e distribuitiva em relação à adição.

Conjugado, norma e produto interno

Exatamente como para aos números complexos, pode-se definir a noção de conjugado de um número complexo hiperbólico. Se

o conjugado de z é definido como

O conjugado satisfaz a propriedades similares às do conjugado do número complexo usual. A saber,

Essas três propriedades implicam que o conjugado número complexo hiperbólico é um automorfismo de ordem 2. A forma quadrática de um número complexo hiperbólico z = x + hy é dada por:

.

Há uma propriedade importante que está preservado pela multiplicação complexa hiperbólica:

Entretanto, essa forma quadrática não é positiva-definitiva mas tem ,em vez disso, a assinatura (1.1), então ela não é uma norma.

Aplicação

Os números complexos hiperbólicos são a linguagem natural para tratar da Relatividade Especial em duas dimensões; os divisores de zero representam o cone de luz da relatividade.[1]

Ver também

Referências

  1. a b c d P. Fjelstad and S. G. Gal, n-Dimensional Hyperbolic Complex Numbers [em linha]


Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya